
::;Cf\ 

12 

The Effect of Interaction on Boundary-Layer 
Separation and Breakdown 

by 

Kevin W. Cassel 

Presented to the Graduate and Research Committee 

of Lehigh University 

in Candidacy for the Degree of 

Doctor of Philosophy 

in 

Mechanical Engineering 

Lehigh University 

December, 1993 

19980115 174 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including'.he time for reviewing instructions, searching existing data sources gathering 
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway Suite 
1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 

December 1993 
3. REPORT TYPE AND DATES COVERED 
Final 

4. TITLE AND SUBTITLE 

The Effect of Interaction on Boundary-Layer Separation and Breakdown 

6. AUTHORS 
Kevin W. Cassel 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Lehigh University 

5. FUNDING NUMBERS 

AFRL-SR-BL-TR-98- 

OOOb 
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
AFOSR/NI 
110 Duncan Avenue, Room B-115 
Boiling Air Force Base, DC 20332-8080 

11. SUPPLEMENTARY NOTES 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for Public Release 

13. ABSTRACT (Maximum 200 words) 

See attached. 

12b. DISTRIBUTION CODE 

DTiG Q^ALITli ü^iüü'i'J&J^ 

14. SUBJECT TERMS 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

L 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239.18 
Designed using WordPerfect 6.1, AFOSR/XPP, Oct 96 



Approved and recommended for acceptance as a dissertation in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy. 

Date 

Dr. J.^5. A. Walker, Professor, 
Department of Mechanical Engineering 

and Mechanics 
(Dissertation Advisor and Chairman 

of the Special Committee) 

Dr. C7R. Smith, Professor, 
Department of Mechanical Engineering 

and Mechanics 

Dr. E. Varley, Professor, 
Department of Mechanical Engineering 

and Mechanics 

Dr. A. Liakopoulos, Associate Professor, 
Department of Mechanical Engineering 

and Mechanics 

^(jUuha^^. 
Dr. H. S. Caram, Professor, 
Department of Chemical Engineering 



Acknowledgements 

I would like to thank Professor J. D. A. Walker for his direction throughout my 

graduate school experience and for providing me with equal measures of guidance and 

independence in carrying out this investigation. I would also like to thank Professors 

F. T. Smith and A. I. Ruban for their ongoing interest in the unsteady separation and 

hypersonic boundary-layer separation portions of this study, respectively. Financial 

support for this investigation was provided by the National Defense Science and 

Engineering Graduate Fellowship Program. 

I would like to express special appreciation to my wife Adrienne D. Cassel for 

her encouragement and support over the last four years and to my son Ryan for 

reminding me each day that there are more important titles one can obtain in life than 

"Dr." 

ru 



The Effect of Interaction on Boundary-Layer 
Separation and Breakdown 

Acknowledgements iii 

Table of Contents iv 

List of Figures vii 

Abstract 1 

1. Introduction 2 
1.1 Viscous-Inviscid Interaction 2 

1.2 Interacting Boundary-Layer Theory 11 

1.3 Limit Analyses of Interaction Problems 15 

PART I -  Unsteady Breakdown of Incompressible 
Boundary Layers 20 

2. Unsteady Boundary-Layer Separation 21 
2.1 Introduction 21 

2.2 Definition of Unsteady Separation 28 

2.3 Lagrangian Methods 31 

2.4 Classical Boundary-Layer Results 35 

2.5 Terminal Boundary-Layer Solution 40 

2.5.1 Form of the Terminal Singularity 40 

2.5.2 Properties of the Terminal Solution 50 

2.6 Interacting Boundary-Layer Results 56 

iv 



3. The First Interactive Stage 61 
3.1 Introduction 61 

3.2 Formulation of the First Interactive Stage 62 

3.2.1 Eulerian Formulation 62 

3.2.2 Lagrangian Formulation 69 

3.2.3 Singularity Conditions 74 

3.2.4 Transformation to a Finite Domain 75 

3.3 Numerical Methods 77 

3.3.1 General Considerations 77 

3.3.2 Momentum Equation 79 

3.3.3 Equation of the Upper Shear Layer 80 

3.3.4 Interaction Condition 87 

3.4 Calculated Results 94 

3.5 Stability Analysis 109 

3.5.1 Linear Stability 109 

3.5.2 Large c Instability 112 

4. Conclusions 117 

PART II -  Hypersonic Boundary-Layer Separation 

on a Cold Wall 120 

5. Triple-Deck Interaction Theory 121 
5.1 Introduction 121 

5.2 Formulation for the Hypersonic Boundaiy Layer on a Cold Wall 125 

5.2.1 The Upstteam Boundary Layer 127 

5.2.2 The Upstream Inner Wall Layer 129 

5.2.3 Scalings of the Interaction Region 131 

5.2.4 The Viscous Sublayer 136 



5.2.5 Region I„ 139 

5.2.6 The Main Deck 144 

5.2.7 The Outer Inviscid Flow 148 

5.2.8 General Interaction Formulation 151 

5.3 Compression Ramp Geometry 154 

5.4 Viscous-Inviscid Singularities 154 

5.4.1 Large Ramp Angle Singularity 155 

5.4.2 Strong Wall Cooling Singularities in Hypersonic Flow 156 

6. Hypersonic Boundary-Layer Solutions 162 
6.1 Introduction 162 

6.2 Solution Procedure for the Hypersonic Triple Deck 163 

6.2.1 Shear Stress Formulation 163 

6.2.2 Finite-Domain Transformation 165 

6.2.3 Numerical Methods 167 

6.3 Stability Analysis 176 

6.4 Calculated Results 182 

6.4.1 No Wall Cooling: S£ = 0 184 

6.4.2 Wall Cooling: S£*0 200 

7. Conclusions 233 

References 236 
Appendix A: Solution of the Terminal Boundary-Layer Equation 248 

Appendix B: Interaction Conditions 251 

Appendix C: Numerical Algorithm for Singular Integrals 259 

Appendix D: Numerical Stability of the Hypersonic Triple-Deck Algorithm 262 

Vita 264 

VI 



List of Figures 

Figure 1.1 - Schematic of shock-induced boundary-layer separation in a 
supersonic flow. 6 

Figure 1.2 - Schematic of the general triple-deck structure. 17 

Figure 2.1 - Instantaneous streamlines for vortex-induced separation in 
frame of reference moving with vortex located at x = 0 
(Reproduced from Peridier, Smith and Walker, 1991a). 
(a)? = 0.45. 38 
(b)f = &= 0.989. 38 

Figure 2.2 - Temporal development of displacement thickness for vortex- 
induced separation. (Reproduced from Peridier, Smith and 
Walker, 1991a). 39 

Figure 2.3 - Schematic of the terminal boundary-layer structure near xs 

(not to scale). 51 

Figure 2.4 - Velocity profiles for the terminal boundary-layer solution. 53 

Figure 3.1 - Schematic of the first interactive stage of unsteady boundary- 
layer separation. 66 

Figure 3.2 - Schematic of characteristic integration. 83 

Figure 3.3 - Mesh definitions for Cauchy integral algorithm. 89 

Figure 3.4 - Equation of the upper shear layer ßt for non-interactive case. 96 

Figure 3.5 - Interactive calculation with a = 1.0. 
(a) Equation of the upper shear layer ß,. 99 
(b) Induced pressure ph 100 
(c) Stream wise velocity perturbation £/7. 101 
(d) Particle position perturbation X, - £ 102 

Figure 3.6 - Induced pressure/?/ from interactive calculations. 
(a) a = 0.5. 104 
(b) a = 0.25. 105 

vii 



Figure 3.7 - Interactive calculation with smoothing: d = 200. 108 

Figure 3.8- Numerical results for Ic. 
(a) Contours of constant Im(7c) on complex c plane. 115 
(b) Comparison of analytical ( ) and numerical 

( ) results for Ic along line A in (a). 116 

Figure 5.1 - Schematic of the triple-deck structure for hypersonic flow 
over a cold wall near a compression ramp (not to scale). 123 

Figure 5.2- Geometry and coordinate system for compression ramp. 127 

Figure 6.1 - Numerical solutions for various small ramp angles a: 
I = 101,7= 51 and a = b = 5.0 for a= 1.0, 1.5; 
/ = 201, J = 101 and a = b = 5.0 for a = 2.0, 2.5, 3.0, 3.5. 
(a) Pressure p. 185 
(b) Wall shear stress tw. 186 

Figure 6.2 - Streamlines for a = 2.0 with / = 201, J = 101 
mda = b = 5.0. 187 

Figure 6.3 - Streamlines for a - 2.5 with /. = 201, J = 101 
anda = fc = 5.0. 188 

Figure 6.4 - Streamlines for a = 3.0 with / = 201, J = 101 
mda = b = 5.0. 189 

Figure 6.5 - Streamlines for a = 3.5 with / = 201, J = 101 
and a = b = 5.0. 190 

Figure 6.6 - Streamwise velocity profiles at x = 0 for a = 3.5 ( ), 
a = 3.9 ( ) and a = 4.5 ( ). 193 

Figure 6.7 - Stationary wave packet for a = 4.0 at t = 85.0 with / = 301, 
7=151anda = 6=10.0. 
(a) Pressure p. 196 
(b) Wall shear stress Tw. 197 

Figure 6.8 - Temporal development of wave packet in pressure p and 
wall shear stress tw (same case as in figure 6.7). 198 

vui 



Figure 6.9 -   Numerical solutions for a = 1.0 with various levels of wall 
cooling; S £ = - 10.0,..., 10.0 in increments of 2.5: no wall 
cooling ( ), subcritical boundary layer ( ) 
and supercritical boundary layer ( ). 
(a) Pressure p. 202 
(b) Wall shear stress Tw. 203 

Figure 6.10 - Numerical solutions for a = 2.0 with various levels of wall 
cooling; S £ = - 10.0,..., 10.0 in increments of 2.5 (case not 
shown was unstable): no wall cooling ( ), subcritical 
boundary layer ( ) and supercritical boundary layer 

( )• 
(a) Pressure p. 204 
(b) Wall shear stress xw. 205 

Figure 6.11 - Numerical solutions for a = 3.0 with various levels of wall 
cooling; S £ = - 10.0,..., 15.0 in increments of 2.5 (cases not 
shown were unstable): no wall cooling ( ), subcritical 
boundary layer ( ) and supercritical boundary layer 

( )• 
(a) Pressure p. 206 
(b) Wall shear stress TW. 207 

Figure 6.12 - Numerical solutions for a = 4.0 with various levels of wall 
cooling; S £ = - 15.0,..., 22.5 in increments of 2.5 (cases not 
shown were unstable): subcritical boundary layer ( ) 
and supercritical boundary layer ( ). 
(a) Pressure p. 208 
(b) Wall shear stress rw. 209 

Figure 6.13 - Numerical solutions for a = 5.0 with various levels of wall 
cooling; S £ = - 20.0,..., 32.5 in increments of 2.5 (cases not 
shown were unstable): subcritical boundaiy layer ( ) 
and supercritical boundary layer ( ). 
(a) Pressure p. 210 
(b) Wall shear stress tw. 211 

Figure 6.14 - Streamlines for a = 3.0. 
(a)S£ = -2.5. 212 
(b)S£ = -5.0. 213 
(c)S£ = -7.5. 214 

IX 



Figure 6.15 - Streamlines for a = 5.0. 
(a)S£ = -5.0. 215 
(b)S£ = -10.0. 216 
(c) S £ = -15.0. 217 

Figure 6.16 - Streamlines for a = 4.0 and S £ = - 12.5. 218 

Figure 6.17 - Summary of separation and stability characteristics for flows 
computed with various ramp angles a and levels of wall 
cooling S£. 219 

Figure 6.18 - Comparison of pressure distributions from numerical results 
( ) for cases given in table 6.1 with analytical results 
( ) for strong wall cooling case. 
(a) Subcritical boundary layer. 226 
(b) Supercritical boundary layer. 227 

Figure 6.19 - Critical ramp angle do at which incipient separation of a 
supercritical boundary layer occurs for various values of 
wall cooling and the streamwise location x0 where it appears. 229 

Figure 6.20 - Incipient separation results from figure 6.19 shown in terms 
of strong wall cooling variables with critical values from 
Kerimbekov etal. (1993) shown for comparison. 
(a) Critical ramp angle £K0 at which separation first occurs. 230 
(b) Streamwise location Jc0 where incipient separation appears. 231 



Abstract 

It is common in boundary-layer flow at high Reynolds numbers involving 

separation for an interaction to be provoked between the viscous boundary layer and the 

inviscid external flow. The effect that this viscous-inviscid interaction has on both 

steady and unsteady boundary-layer separation is investigated. In part I the unsteady 

boundary-layer separation process is considered in the context of two-dimensional 

incompressible flow. In regions of adverse streamwise pressure gradient along solid 

surfaces, it is common for the boundary layer to erupt away from the surface in a 

narrow streamwise region. Classical non-interacting boundary-layer solutions of such 

flows breakdown within a finite time, but the thickening boundary layer induces an 

interaction with the outer inviscid flow during the first interactive stage in order to 

relieve the singularity. Numerical solutions were obtained of the first interactive stage 

formulated in Lagrangian coordinates. These results show that the viscous-inviscid 

interaction causes the flow to become unstable, resulting in a breakdown of the first 

interactive stage. The instability is of a high-frequency inviscid type and is shown to be 

characterized by large complex wavespeeds. 

In part II separation of a hypersonic boundary layer flowing over a 

compression ramp is considered, both with and without wall cooling. For small ramp 

angles, the flow in the vicinity of the corner is governed by the triple-deck structure 

which accounts for the viscous-inviscid interaction. The flow over the compression 

ramp exhibits separation in the corner for ramp angles above a critical value. 

Numerical solutions have been obtained for the hypersonic triple deck and show that 

for larger ramp angles the flow becomes unstable in the form of a stationary wave 

packet which forms near the corner. Wall cooling was found to have a significant 

effect upon both the location of separation and the extent of the recirculating-flow 

region, and it is shown to stabilize or destabilize the instability at high ramp angles 

depending upon the average Mach number across the boundary layer. 



1. Introduction 

1.1 Viscous-Inviscid Interaction 

A general mathematical model for fluid flow is provided by the Navier-Stokes 

equations which are the mathematical statement of conservation of mass and 

momentum and describe a balance between inertial, pressure and viscous forces within 

a fluid. These equations apply for a wide variety of flow situations; however, analytical 

solutions are rare and very difficult to obtain due to the highly non-linear nature of the 

equations. In recent times increasingly powerful computer systems have facilitated 

numerical solutions of the Navier-Stokes equations in many flow environments; 

however, there are numerous unresolved questions in fluid mechanics which cannot 

currently be addressed using such direct numerical simulations. In particular, it has 

become evident through asymptotic analyses that many important flow features in high 

Reynolds number Re flows occur over length and time scales which are too small to 

be resolved solely by numerical solutions of the Navier-Stokes equations and this 

situation is likely to persist for the foreseeable future. Prior to the advent of the modern 

computer age, a common theoretical approach was to the consider appropriately 

simplified subsets of the full Navier-Stokes equations which were more amenable to 

solution. This approach was eventually formalized and is now known as asymptotic 

analysis, wherein solutions in each subregion of the flow field are found and then 

systematically matched together. Even if computational resources at some point in the 

distant future allow for accurate solutions of the Navier-Stokes equations for general 

flow environments and especially at high flow speeds, significant physical insight into 

specific flow features can be gained through knowledge of the predominant physics in 

each region of the flow. This is best obtained through an isolation of the dominant 

terms in the governing equations within each region of the flow through asymptotic 

techniques. 



In the early development of theoretical fluid mechanics, it was often assumed 

that the effects of friction, i.e. viscosity, were negligible. Therefore, the terms in the 

Navier-Stokes equations which describe the effects of viscous forces were neglected 

giving rise to the inviscid Euler equations of ideal fluid theory. While this assumption 

appeared valid for many of the common fluids (such as air and water) that have very 

small viscosity, the ideal fluid theory was found to be incapable of accounting for 

certain observed phenomena. For example, inviscid theory predicts that a solid body 

moving through a uniform stream of fluid does not experience drag forces; this is 

called d'Alembert's paradox since it clearly violates experimental observation. Such 

discrepancies, as well as a number of situations involving non-uniqueness, perplexed 

theoreticians for many years. 

For flow near solid walls, some of the difficulties were resolved by Prandtl 

(1904) who argued that, while the Euler equations govern over a majority of the flow 

field, they are not uniformly valid, and viscous effects must become important in a thin 

layer along the surfaces. This boundary layer is necessary in order to adjust the 

tangential surface velocity from the slip value predicted by inviscid theory to relative 

rest at the surface; the steep velocity gradients within this layer result in viscous forces 

that are of the same order as the inertial forces. Prandtl's classical boundary-layer 

equations have been the basis of innumerable investigations, and these are responsible 

for much of our current understanding of high Reynolds number fluid flows involving 

solid surfaces. The basic assumption of the boundary-layer equations is that the layer 

remains thin and it emerges that the thickness is 0{Re'm) as Re -» °o . This leads to 

two consequences for the boundary-layer flow, namely that the variation in pressure 

gradient normal to the surface is small, and that the velocity normal to the surface is 

small. Since the boundary layer is thin, it is expected to have little effect on the external 

inviscid flow. Mathematically, the boundary-layer equations consist of a second-order 

partial differential equation of parabolic type; these equations can, in principle, be 

solved by marching a solution downstream from a known velocity profile subject to 

the no-slip condition at the surface and a pressure gradient prescribed from an inviscid 



solution. 

When the pressure gradient imposed across the boundary layer is adverse (i.e. 

the pressure is increasing in the flow direction), the low momentum fluid within the 

boundary layer is susceptible to developing regions of reversed flow which may cause 

the boundary layer to separate from the surface. Separation is a dominant feature in 

many flows and can have a significant affect upon lift and drag, as well as overall 

performance of systems involving fluid flow. In Prandtl's (1904) physical picture of 

separation for flow past fixed wall, the boundary layer was assumed to leave the 

surface at a point where the skin friction vanished. Early attempts to integrate the 

boundary-layer equations (Howarth, 1938), however, encountered difficulties as a 

solution was computed downstream toward a point where the skin friction vanished. 

Goldstein (1948) showed that this difficulty was due to a singularity which forms at the 

separation point (i.e. a point of zero wall shear in steady flows) in all cases where the 

inviscid pressure or external velocity is prescribed. It was later shown that an inverse 

method, in which the wall shear stress or boundary-layer displacement thickness is 

prescribed rather than the pressure gradient, could be used to advance a solution 

through small-scale separation regions for which the boundary layer remains thin with 

a thickness which is 0(Re'm). 

Whereas the Goldstein singularity occurs in steady flows at a separation point 

defined by vanishing wall shear, a more general separation criterion is required in 

unsteady flows and flows with moving surfaces (see Williams, 1977). Sears and 

Telionis (1975) introduced the MRS model of unsteady separation which is named for 

Moore (1958), Rott (1956) and Sears (1956). This criterion, which is discussed in 

more detail in §2.2, indicates that unsteady separation occurs when the shear stress and 

velocity vanish simultaneously at a point within the boundary layer in a singular 

manner in a frame of reference moving with the separation point. This unsteady 

separation singularity was first demonstrated in a numerical calculation by Van 

Dommelen and Shen (1980) who considered the flow over the impulsively-started 

circular cylinder.   This and other examples involving the unsteady separation 



singularity will be discussed in §2.4, and the analytical form of the singular solution 

will be given in §2.5. Both the steady Goldstein singularity and the unsteady Van 

Dommelen singularity suggest outflows at the outer edge of the boundary layer which 

eventually are locally greater than 0{Re'm). 

Boundary-layer theory corresponds to a first-order approximation to the 

Navier-Stokes equations in regions near solid surfaces and in the limit of small 

viscosity (large Re). In the classical interactive strategy (Smith, 1982), the 

displacement effect of the boundary layer is considered to provoke a viscous-inviscid 

interaction in the form of a second-order correction to the external flow field. When the 

boundary layer remains thin and attached at high Reynolds numbers, the interaction has 

only a small influence upon the external flow. In such cases the classical interactive 

strategy may be used wherein solutions for the outer inviscid flow and the boundary- 

layer flow are obtained in a hierarchical process. First, a solution is determined for the 

inviscid flow around some given surface geometry. Then the boundary-layer solution 

is obtained using the inviscid mainstream velocity as a condition at the boundary-layer 

edge. The boundary layer displaces the external flow a distance which is 0(Re~m) and 

thereby effectively alters the surface shape; therefore, the inviscid flow solution must 

then be modified to take this effect into account. This new inviscid solution is then 

used to refine the boundary-layer solution, and the iteration continues until convergence 

to some desired accuracy is achieved. This strategy may be regarded as only weakly 

interactive since it does not allow for the simultaneous interaction between both regions 

of the flow. It is more accurately described as a hierarchical approach, because each 

iteration is identical to a classical boundary-layer calculation where the pressure gradient 

(or mainstream velocity) is prescribed. Therefore, steady calculations using this 

strategy fail when a point of separation is encountered since a Goldstein singularity is 

produced just as in the non-interactive case. One of the few examples where the 

classical interactive strategy is successful is the flow over a flat plate aligned parallel to 

a uniform mainstream. Most other flows involve bodies of finite thickness giving rise 

to regions of adverse pressure gradient and separation. 



Figure 1.1 - Schematic of shock-induced boundary-layer separation in a 
supersonic flow. 

One of the first examples in which it was realized that viscous-inviscid 

interaction must play a central role in the flow dynamics involves the impingement of a 

shock wave on a boundary layer in a supersonic stream. It was observed in several 

experimental studies of this flow (see, for example, Ackeret etal, 1947 and Chapman 

et al, 1957) that an incident shock wave causes the boundary-layer flow to separate 

from the surface upstream of the point of impingement of the primary shock, and a 

secondary shock forms near the separation point. This is illustrated schematically in 

figure 1.1. The impingement of a shock wave on a surface is an example of a 

compressive disturbance in which the disturbance induces a rise in the inviscid pressure 

distribution along the surface. A compressive disturbance may also be caused in 

supersonic flows by a surface that turns toward the flow. Chapman et al. (1957) 

carried out experiments for cases where separation was induced by such surface 

geometries (including steps and corners) which also exhibited separation upstream of 

the disturbance. The upstream influence observed in these examples was puzzling 

because the boundary-layer equations are parabolic and, therefore, do not permit 

upstream propagation of disturbances within the boundary layer.   Likewise, the 



supersonic mainstream can only transmit disturbances downstream. The first physical 

explanation for this upstream influence was given by Lighthill (1953a,b) who 

recognized that when a compressive disturbance of sufficient strength induces 

separation, the thickened boundary layer alters the external flow by inducing a pressure 

rise ahead of the separation point, and the resulting adverse pressure gradient then 

causes the flow to separate farther upstream. This is often called self-induced 

separation. The theoretical work of Lighthill (1953b) became the basis for the 

supersonic triple-deck theory of Stewartson and Williams (1969) and Neiland (1969) 

which provides a theoretical explanation for the upstream influence in supersonic self- 

induced separation. 

It is interesting to note that for supersonic flows, the flow in the vicinity of the 

separation point does not depend upon the form or strength of the disturbance for 

sufficiently large compressive disturbances. This was observed in the experiments by 

Chapman etal. (1957) and was considered theoretically by Stewartson and Williams 

(1969). This phenomenon is called a free interaction because the flow near separation 

is 'free' from the direct influences of the downstream geometry and conditions. In the 

free-interaction region, the pressure rises from its upstream value, through a universal 

value at separation (regardless of the strength of the disturbance) to a constant plateau 

pressure in the separated region. Likewise, the wall shear has a characteristic behavior 

heading into the recirculating-flow region in which it falls from its upstream value to 

zero at the separation point. 

Another classical interactive problem involves the steady flow in the vicinity of 

the trailing edge of a flat plate. This interaction does not involve separation but rather is 

provoked by an abrupt change in boundary conditions. The incompressible case was 

first considered by Stewartson (1969) and Messiter (1970). It had been known that the 

Blasius solution for the boundary-layer flow over a flat plate does not match smoothly 

to the near-wake solution (Goldstein, 1930) downstream of the trailing edge. The 

change in boundary condition is from the no-slip condition on the plate to a symmetry 

condition on the wake centerline. This causes an acceleration of the flow near the 

7 



symmetry line into the wake, leading to vertical motion toward the centerline and a 

decrease in displacement thickness. The apparent irregularities in the near-wake 

solution at the trailing edge may be regarded as resulting because the parabolic 

boundary-layer equations are unable to anticipate this acceleration. The solution is 

smoothed out in a three-layer or triple-deck structure centered at the trailing edge. For 

incompressible flows this structure was first discovered by Stewartson (1969) and 

Messiter (1970) and was subsequently found to apply to a variety of physical 

situations. The triple-deck structure consists of a thin sublayer adjacent to the wall, a 

middle deck which is essentially the continuation of the upstream boundary layer and 

an upper deck which rides over the boundary layer within the external-flow region. In 

subsonic flows, disturbances are propagated upstream in the upper deck. Triple-deck 

theory will be discussed in more detail in §1.3 with additional examples given where 

the structure occurs. 

Triple-deck theory corresponds to a limit analysis (Re —»°°) and has proven 

very useful in cases involving local interactions. However, triple-deck analysis often 

involves difficult analytical behaviors as well as challenging computational problems. 

An alternative approach is conventional interacting boundary-layer theory where a large 

but finite Reynolds number is assumed. In this approach the boundary-layer equations 

are solved subject to an interaction condition which accounts for second-order 

perturbations in the external flow provoked by the boundary layer. Interacting 

boundary-layer formulations differ from the classical interactive approach in that the 

boundary-layer and external-flow solutions are evaluated simultaneously rather than 

sequentially. In this way the Goldstein singularity, which occurs when the external 

pressure distribution is prescribed for the boundary layer, is avoided. Interacting 

boundary-layer theory will be discussed in §1.2. 

Significant interaction between the viscous boundary layer and the outer 

inviscid flow may occur in a wide variety of flow situations. In many instances 

interaction is provoked by a relatively small-scale steady separation of the boundary 

layer; this can occur in flows about bluff bodies, in the vicinity of airfoil trailing edges 

8 



of finite thickness or at angle of attack, with surface injection, over surface humps and 

cavities, past corners and due to an incident shock wave. Unsteady boundary-layer 

separation, which often involves local eruptions of fluid away from the surface, may 

occur in the flow about impulsively-started bluff bodies and surfaces undergoing 

unsteady motion such as pitching airfoils. Unsteady separation also occurs in 

applications involving the convection of vortices in the vicinity of solid surfaces. Such 

vortices may arise due to flows encountering surface-mounted obstacles, vortex 

shedding from upstream surfaces and vortices found in turbulent boundary layers. 

Examples of unsteady boundary-layer separation are discussed in more detail in §2.1. 

In addition to separation-induced interactions, flows involving abrupt changes in 

boundary conditions, such as at a trailing edge or jump in surface temperature, often 

provoke an interaction in order to communicate the impending change to the upstream 

boundary layer. 

This thesis is concerned with the effect of viscous-inviscid interaction on both 

steady and unsteady boundary-layer separation. Each type of separation will be 

considered in different flow environments. The first to be considered corresponds to 

unsteady separation of incompressible boundary layers and is described in part I 

(consisting of chapters 2, 3 and 4) of this thesis. In the examples involving unsteady 

separation mentioned above, it is common for a highly unsteady eruption to occur in 

regions of adverse streamwise pressure gradient along surfaces. The adverse pressure 

gradient causes the formation of a region of recirculating flow within the boundary 

layer which often is a precursor to an abrupt local ejection of near-wall fluid into the 

external flow. When flows of this nature are investigated within the framework of 

classical non-interactive boundary-layer theoiy, the unsteady solution terminates in a 

singularity characterized by dramatic local thickening of the boundary layer and strong 

outflows within a narrow streamwise region. This separation singularity is a 

consequence of the breakdown of the boundary-layer assumptions which require the 

boundary layer to remain thin. Numerical solutions of the classical boundary-layer 

equations which evolve toward this singularity are discussed in §2.4, and a detailed 



description of the analytical form of the singularity is given in §2.5. 

As the flow evolves toward the separation singularity, an interaction is 

provoked between the thickening viscous boundary layer and the outer inviscid flow. 

In two-dimensional incompressible flows this viscous-inviscid interaction is accounted 

for in the so called first interactive stage formulated by Elliott, Cowley and Smith 

(1983). This stage describes a generic unsteady separation structure in the limit of 

infinite Reynolds number that applies in most cases of unsteady separation, regardless 

of the global flow environment in which it occurs. The first interactive stage is 

discussed in detail in §3.2. In this investigation numerical solutions of the first 

interactive stage of unsteady separation were obtained in Lagrangian coordinates as 

described in chapter 3. The computation of unsteady eruptive flows in Lagrangian 

coordinates has distinct advantages over traditional Eulerian formulations (which are 

discussed in §2.3). The results obtained here show that the first interactive stage breaks 

down in the form of a high-frequency instability immediately upon the onset of 

interaction. The consequences of these results for the unsteady separation process are 

discussed in chapter 4. 

The second flow environment considered in this thesis is at the opposite end of 

the flow speed spectrum and involves separation in a hypersonic boundary layer with 

and without wall cooling. This case is considered in part II (consisting of chapters 5, 6 

and 7) of this thesis. The effect of wall cooling is of particular interest because cooling 

is often necessary in hypersonic flows in order to combat the high temperatures 

generated near the surface. The hypersonic triple-deck formulation for cold walls is 

given in chapter 5, and the algorithm used here to solve this flow is described in chapter 

6. This algorithm was extended from that developed for supersonic flow by Ruban 

(1978) in order to incorporate cold wall effects; the method applies for general surface 

shapes within the triple-deck length scales. 

Solutions were obtained here for the flow over the compression ramp with 

various ramp angles and levels of wall cooling. This simple geometry induces 

separation near the corner for ramp angles above a critical value and provides a 
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framework in which to investigate the effects of surface geometry and wall cooling on 

steady separation. The present results are the first to demonstrate that the flow over 

compression ramps at sufficiently high ramp angles becomes unstable and develops 

stationary wave packets. In addition, the results show that wall cooling has a 

significant effect upon both stability and separation. Wall cooling was found to 

stabilize or destabilize the flow depending on the average Mach number in the 

boundary layer approaching the corner. Cooling was also found to have a dramatic 

effect upon both the location and size of the recirculating-flow region and to limit the 

upstream or downstream propagation of disturbances. 

1.2 Interacting Boundary-Layer Theory 

Consider an incompressible flow having characteristic speed U„ past a solid 

body having a characteristic length L. The flow is characterized by the non- 

dimensional Reynolds number defined by 

Re = ^, (1.1) 

where p and fi are the density and viscosity of the fluid, respectively. Cartesian 

coordinates x and y (non-dimensionalized with respect to L) are defined in directions 

along and normal to the surface, respectively; velocity components u and v (non- 

dimensionalized with respect to UJ are defined in the corresponding directions. In 

addition, let t be the time coordinate andp the dynamic pressure non-dimensionalized 

with respect to LIUl and p Ul, respectively. 

Classical, or non-interacting, boundary-layer theory assumes that a given flow 

may be subdivided into two flow regimes namely, an external inviscid region 

consisting of the majority of the flow field and a thin boundary layer adjacent to the 

solid surface in which viscous effects are important. The flow in the external region is 

11 



governed by the Euler equations subject to a condition of zero normal velocity at the 

surface (v = 0 at y = 0), and the solution to these equations then produces a slip velocity 

along the surface 

u -» Ue(x,t) asy ->0. (1.2) 

To satisfy the no-slip condition (u = 0 aty = 0) at the surface, a thin boundary layer 

(having a thickness 0(Re~m)) is required in order to adjust the stream wise velocity 

from Ue to relative rest. Within the boundary layer, scaled variables are defined by 

y = Re-mY,  v = Re-mV, (1.3a,b) 

such that Y and V are 0(1).   The flow within this thin layer is governed by the 

boundary-layer equations given by 

du        du du        dp     du        dp 

¥ + "ä* +    dY=~~dx~ + ~dY1,      dY — + " — + y^7 = -^ + ^72>     ^7=0> (l-4a,b) 

Yx 
+ d¥=°- (L4c) 

The boundary-layer equations are an exact subset of the Navier-Stokes equations in the 

limit Re —> °° . Equation (1.4b) simply asserts that the surface pressure distribution 

from the inviscid solution is impressed across the boundary layer; therefore, p = p{x,t) 

in the boundary layer. The boundary conditions for (1.4) are then 

u = V = 0  atY = 0, (1.5a) 

lim u(x,Y,t) = U£x,t). (1.5b) 
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The solution in the external region is generally obtained independently of the boundary 

layer, and the boundary-layer flow is driven by the prescribed streamwise pressure 

gradient obtained from the external flow solution. Applying equation (1.4a) at the 

boundary-layer edge, the streamwise pressure gradient may be related to the inviscid 

slip velocity through 

_^l = ^i + Ue^ (i.6) 
dx     dt       e dx' 

Solutions for which an unsteady separation singularity develops in the classical 

boundary-layer equations will be discussed in §2.4. This non-interactive singularity 

develops as a consequence of imposing the external pressure field on the boundary 

layer for an indefinite period of time. The presence of an adverse streamwise pressure 

gradient eventually triggers a sequence of events that causes a dramatic local growth in 

the boundary layer eventually provoking an interaction with the outer inviscid flow. 

One method of treating these types of flows is conventional interacting boundary-layer 

theory which assumes a large but finite Reynolds number and accounts for the small 

0(Re~m) perturbations induced by the boundary layer on the external flow. Taking 

these perturbations into account supplements the classical non-interacting boundary- 

layer equations (1.4) with an interaction condition which may be obtained from the 

analysis described in Appendix B for incompressible flow and is 

Ue(x,t) = Ua(x,t) + Re'1121 I"   ^j_U£s,t) S\s,i)] ^. (1.7) 

Here, Ua(x,t) is the leading-order inviscid slip velocity associated with the non- 

interacting case, and S*(x,t) is the scaled dimensionless displacement thickness defined 

by 
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8 *(*,*) = 
Jo 

1     u(x,Y,t) 
Ue(x,t) 

dr. (1.8) 

The second term in the interaction condition (1.7) must remain small in comparison to 

Ua in order for the approach to remain valid; this term is due to the perturbations 

induced by the boundary layer on the external flow and is a Cauchy principal-value 

integral. Equation (1.7), therefore, defines a Cauchy principal-value integro-differential 

equation which relates the mainstream pressure (see equation 1.6) to the displacement 

thickness of the boundary layer thus permitting mutual interaction between the 

boundary layer and the external inviscid flow. 

Steady interacting boundary-layer theory has been used extensively and with 

good success (see, for example, Burggraf, Rizzetta, Werle and Vatsa, 1979); in 

particular, the approach has been shown to relieve the Goldstein (1948) singularity 

which occurs at a point of zero surface shear stress in steady non-interacting boundary- 

layer flows provided the boundary-layer calculation is executed in a specific manner. 

More recently, interacting boundary-layer theory has been applied to unsteady 

separating flows, but the results have proven controversial. The impulsively-started 

circular cylinder has been considered by Henkes and Veldman (1987) and the vortex- 

induced boundary layer by Chuang and Conlisk (1989) and Peridier, Smith and Walker 

(1991b). Riley and Vasantha (1989) considered both of these model problems. The 

contradictory results obtained in these studies will be discussed in §2.6, as they relate to 

the unsteady boundary-layer separation process. 

1.3 Limit Analyses of Interaction Problems 

An alternative to the interacting boundary-layer theory discussed in the previous 

section is to consider a limit analysis (Re -> °°) of the viscous-inviscid interaction 

problem; in this approach the relevant flow regions are identified (along with the 

pertinent scales) as functions of the Reynolds number and the governing equations 
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determined through an asymptotic analysis. Two such theories are the focus of the 

present investigation: the first interactive stage of unsteady incompressible boundary- 

layer separation and the hypersonic boundary-layer separation on a cold wall. The first 

interactive stage was first described in association with the onset of unsteady 

incompressible boundary-layer separation, although the structure probably applies (in 

modified form) to compressible boundary layers. This analysis will be discussed in 

part I of this thesis. 

Triple-deck theory applies to the hypersonic cold wall problem, as well as to a 

surprising number of diverse problems involving relatively small-scale viscous- 

inviscid interactions. The triple-deck structure was first discovered as a result of a 

search for a theoretical explanation of the experimental findings of Liepmann (1946), 

Ackeret, Feldmann and Rott (1947), Chapman, Kuehn and Larson (1957) and others; 

these authors found that a shock wave in supersonic flow impinging on a boundary 

layer may induce separation within the boundary layer but upstream of the shock. This 

so called "self-induced" separation problem cannot be explained solely in terms of the 

parabolic boundary-layer equations which do not permit the upstream propagation of 

disturbances; therefore, in the context of classical theory the boundary layer is unaware 

of the presence of the shock wave upstream of the point of impingement. Chapman et 

al. (1957) speculated correctly that the physical mechanism for the upstream influence 

was a mutual interaction between the displacement thickness of the boundary layer and 

the pressure gradient in the outer inviscid flow. The theoretical work of Lighthill 

(1953) then provided the framework for the development of the subsequent supersonic 

triple-deck theory of Stewartson and Williams (1969) and Neiland (1969). 

The analogous incompressible triple deck was formulated simultaneously for 

the problem at the trailing edge of a flat plate by Stewartson (1969) and Messiter 

(1970). As the flow over a flat plate (described by the Blasius boundary-layer solution) 

encounters the trailing edge, the solution must merge downstream into the Goldstein 

(1930) near-wake solution. However, the transition is apparently not smooth and 

contains irregularities, with infinite streamwise gradients and normal velocity being 
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predicted at the trailing edge. These irregularities are a result of the abrupt change in 

boundary conditions from the no-slip condition along the flat plate to the symmetry 

condition downstream in the wake. Again, the problem is associated with the fact that 

the solution of the parabolic boundary-layer equations is unaware of the approaching 

trailing edge; thus, the solution cannot adjust for the impending acceleration of the flow 

within the wake. The difficulty is resolved by introducing a triple-deck structure 

centered on the trailing edge. This short interaction region allows for the effects of the 

upstream influence (in the upper deck) and provides a smooth transition from the 

Blasius solution upstream to the Goldstein near-wake solution. 

In subsequent years, triple-deck theory has been applied to many seemingly 

diverse problems in both steady and unsteady flow and throughout the subsonic and 

supersonic flow regimes. A common feature in all these problems, however, is some 

surface or mainstream disturbance which provokes a viscous-inviscid interaction in a 

local region above the boundary layer where upstream influence is facilitated. Some 

examples are small surface features such as humps, indentations, ramps or abrupt 

changes in surface conditions such as weak surface injection or a jump in surface 

temperature. The triple deck structure also applies in the vicinity of the separation point 

for steady large-scale separating flows. These situations and other triple-deck problems 

have been reviewed by Neiland (1974, 1981), Stewartson (1974, 1981), Lagerstrom 

(1975), Messiter (1979, 1983), Adamson and Messiter (1980) and Smith (1982). 

Historically, the primary focus has been on the two-dimensional triple deck, but the 

analogous structure exists in three-dimensions and has been considered by Smith, 

Sykes and Brighton (1977), Smith (1982) and Duck and Burggraf (1986). 

Despite the wide variety of situations in which it occurs, the triple-deck 

structure is surprisingly generic. The interaction region is centered at the disturbance 

and has stream wise extent 0{Rem); it consists of three layers as shown schematically 

in figure 1.2. A thin viscous sublayer (region I) having a thickness 0(Re~5m) occurs 

adjacent to the surface in which the flow is governed by the incompressible boundary- 

layer equations but with unknown pressure gradient. The balance of the boundary layer 
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Figure 1.2 - Schematic of the general triple-deck structure. 

(region II) is referred to as the main deck and essentially is a continuation of the 

upstream boundary layer. This layer has a thickness 0(Re~m) and serves to 

communicate the affects of the interaction between the viscous sublayer and the upper 

deck. Finally, the upper deck (region HI) is the local portion of the outer inviscid flow 

which is altered by interaction with the viscous sublayer. The solution in this upper 

layer provides an interaction condition that couples the induced pressure in the external 

flow with the displacement effect of the viscous sublayer. The form of this condition 

depends on whether the flow is subsonic or supersonic. It is through this viscous- 

inviscid interaction that upstream influence is permitted within the boundary layer. 

While at first sight the triple-deck structure appears rather complex, the equations 

which comprise the triple-deck formulation are simply the incompressible boundary- 

layer equations in the viscous sublayer subject to an interaction condition. The 

complete triple-deck formulation is as follows: 
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du       du       du       dp    au       dp    . .. n. , 
— + u — + v — =-^-+^j,     ~r = 0, (1.9b) 
dt        dx       dy       dx     dy1       dy 

^u    dv 
^ + T" = 0, (1.9c) 
dx    dy 

u = v = 0 aty = 0, (1.9d) 

«-»)> + •■■   asx->-°o, (l-9e) 

M->y + A(x,0 + "*   asy-»°°, (1.9f) 

where w and v are the velocities in the streamwise x and the normal y directions, 

respectively, f is time and p(x,t) is the pressure distribution across the triple deck. All 

variables are scaled to be 0(1) within the viscous sublayer. The interaction conditions 

are 

c,0 = i|_< 
M   dy 
ds />(*.') = £ I    — Ä (1-lOa) 

for subsonic flow and 

34 
p(jc,r) = ~jk, (1.10b) 

for supersonic flow. Here, A(x,t) represents the displacement thickness of the viscous 

sublayer. The triple-deck formulation (1.9-1.10) applies to numerous situations which 

differ only in small modifications to the boundary conditions. 

One question which arises here is whether a limit approach with large Reynolds 

number is appropriate for the investigation of laminar flows, in light of the fact that 
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transition to turbulent flow generally occurs at high Reynolds numbers. A second 

question concerns whether the triple deck and interacting boundary-layer theory 

(discussed in the previous section) are consistent in the limit Re -> °o . The latter 

question was studied by Burggraf et al. (1979) who considered supersonic flow over 

a compression ramp. They computed the flow using both interacting boundary-layer 

theory and triple-deck theory and found that the triple-deck results closely represented 

the limiting form of the interacting boundary-layer results. For the case considered, 

agreement was extremely close for Reynolds numbers greater than about 108. In 

addition, good agreement was found between experiment and the interacting boundary- 

layer results at lower Reynolds number. In another study Jobe and Burggraf (1974) 

produced numerical solutions for the incompressible triple deck near the trailing edge 

of a flat plate and found reasonable agreement with experimental results for Reynolds 

numbers as low as 10. Therefore, not only does triple-deck theory provide asymptotic 

solutions for high Reynolds number flows, it often gives reasonably accurate results 

for Reynolds numbers below the critical value at which the flow becomes turbulent. 

Perhaps more importantly, limit structures, such as the triple deck, give the dominant 

length and time scales of particular flow features. Any attempts to obtain purely 

numerical solutions of flows involving these features (for example, using the full 

Navier-Stokes equations) must take these scales into consideration when choosing 

numerical grids. 

In part II of this thesis, the hypersonic triple deck will be considered with and 

without wall cooling. Numerical solutions of the hypersonic triple deck are obtained 

for the flow over the compression ramp in order to determine the effects of wall 

cooling on the separation which normally takes place in the corner. The presence of a 

cold wall diminishes the displacement effect of the lower deck until eventually that 

associated with the main and lower decks are comparable. The formulation differs 

from classical triple-deck theory in that an additional term appears in the interaction 

condition (1.10b). 
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2. Unsteady Boundary-Layer Separation 

2.1 Introduction 

Because flow past a rigid body must come to relative rest at the surface, the 

fluid within the boundary layer experiences a momentum deficit and is susceptible to 

the onset of reversed flow in regions of adverse external pressure gradient. It is 

common in certain unsteady high Reynolds number flows (where such conditions 

exist) for boundary-layer fluid to be eventually ejected away from the surface in a local 

eruption into the outer flow. The adverse pressure gradient which initiates this 

unsteady boundary-layer eruption may be due to the surface geometry or some external 

flow feature such as a vortex convecting above the surface. Unsteady eruptions have 

been observed in a number of technologically important applications and some 

representative examples are discussed here. 

In the impulsive motion of bluff bodies through a fluid, localized eruptions of 

near-wall fluid are often observed. The eruptive process is generally initiated by the 

formation of recirculating flow near the surface where the mainstream pressure 

gradient is adverse. As this recirculation region grows, a narrow zone of strong 

outflow is observed to form within the boundary layer at sufficiently high Reynolds 

number, and this ultimately provokes an interaction with the outer inviscid flow. One 

extensively studied example is the impulsively-started circular cylinder (see, for 

example, Bouard and Coutanceau, 1980 and Ta Phuoc Loc and Bouard, 1985). Soon 

after the impulsive start two symmetric reversed-flow regions develop near the rear 

stagnation point. As time progresses, these regions grow both in streamwise and 

lateral extent; secondary eddies are often observed to form subsequently near the point 

of separation. For large times it is known that periodic vortex shedding occurs from 

the upper and lower surfaces of the cylinder; however, the exact sequence of events 

connecting the development at small time to observed features at large times are not 

well understood for high Reynolds number flows.   Theoretical studies of the 
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impulsively-started circular cylinder will be discussed in §2.4 in which it is argued that 

the flow near the upstream separation point ultimately focuses toward a sharp eruption. 

This highly unsteady event occurs within a very narrow streamwise zone and 

culminates in an abrupt ejection of fluid away from the surface. 

Although at first glance it might appear that vortices near solid surfaces would 

induce motions very different from that of unsteady bluff body flows, it emerges that 

the resulting boundary-layer flow also exhibits unsteady eruptions. Vortices may be 

shed from upstream surfaces (such as airfoil tips), in the dynamic stall of a pitching 

airfoil or from other objects which protrude into the flow. Three-dimensional flows 

encountering surface-mounted obstacles, such as wing/body junctures, also produce 

vortices which interact with the surface. On a much smaller scale, turbulent boundary 

layers contain complex vortical structures known as hairpin vortices which convect 

along the surface (Smith et a/., 1991). In each of these examples, the adverse pressure 

gradient induced by the vortex on the surface generates unsteady eruptive events which 

are surprisingly similar considering the differences of their various origins. These 

vortex-induced eruptions are reviewed by Doligalski, Smith and Walker (1994), and 

model problems have been considered numerically by Doligalski and Walker (1984), 

who considered a convected rectilinear vortex, Ersoy and Walker (1985, 1986), who 

considered counter-rotating vortex pairs, and Walker et al. (1987), who considered 

vortex rings experimentally and theoretically. In all model problems, a spike was 

found to form eventually in the boundary-layer displacement thickness in an event 

indicative of an unsteady boundary-layer eruption. 

A three-dimensional example of vortex-induced eruptions occurs near the base 

of surface-mounted obstacles as in Baker (1979) and Doligalski et al. (1994). As a 

flow encounters a large three-dimensional obstacle on the surface, adverse pressure 

gradients in both the streamwise and cross-stream directions cause the vorticity within 

the boundary layer to become concentrated into discrete vortices near the juncture. 

These vortices, often called 'necklace' or 'horseshoe' vortices, wrap around the 

obstacle and extend downstream.  For high Reynolds numbers, a series of several 

22 



horseshoe vortices can develop. An unsteady eruption, essentially similar to the two- 

dimensional case, can be induced by the portions of the vortex just upstream of the 

obstacle and also along the streamwise legs extending downstream once the Reynolds 

number is sufficiently high. After an eruption occurs, the ejected boundary-layer 

vorticity is observed to wrap around the primary vortex adjacent to the obstacle causing 

it to convect toward the obstruction and diminish in strength. Another vortex is then 

observed to form upstream, and the process repeats in a periodic fashion. 

Perhaps the most widely applicable example of vortex-induced unsteady 

eruptions occurs on a much smaller scale within transitional and turbulent boundary 

layers. Turbulent boundary layers generally consist of two regions: (1) a thin inner 

wall layer adjacent to the surface, where viscous effects are important, and (2) an outer 

layer comprising the bulk of the boundary layer where the flow is predominantly 

inviscid but highly rotational. Vortex structures are common within the outer layer, 

and in recent years much research has been focused on the hairpin vortex which is 

believed to be the central element in the generation and maintenance of turbulence in 

wall-bounded flows. For recent reviews of this process see Falco (1991), Grass et al. 

(1991), Robinson (1991) and Smith et al. (1991). It has been shown experimentally 

that hairpin vortices can be generated by small disturbances on the surface, as well as 

by fluid injection at the surface (Acarlar and Smith, 1987a,b); the subsequent evolution 

of the hairpin vortex has been documented experimentally by these authors as well as 

computationally by Hon and Walker (1991). As a hairpin convects above the surface, 

the rotational motion of its legs, which are oriented in the streamwise direction, causes 

the formation of low-speed streaks within the wall layer that extend in the streamwise 

direction. As the hairpin convects downstream, it moves closer to the wall and 

eventually provokes an interaction with the viscous wall layer. Local adverse 

streamwise and lateral pressure gradients are induced on the surface in the regions 

between the legs and behind the vortex head. In these regions, therefore, three- 

dimensional unsteady eruptions occur along crescent-shaped ridges (see Van 

Dommelen and Cowley, 1990 and Smith et al, 1991) injecting highly rotational fluid 
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into the outer region of the boundary layer. These plumes of vorticity then roll over 

and form new hairpin vortices setting up a regenerative process in which the turbulence 

is initially generated and subsequently sustained through the introduction of new 

vorticity from the wall layer into the outer region. 

Finally, an interesting example of unsteady separation which exhibits eruptions 

induced by both the geometry and the interaction of vortices with the surface flow is the 

dynamic stall process at high Reynolds numbers. This stall process occurs when an 

airfoil is pitched up rapidly in applications involving maneuverable aircraft as well as 

on the blades of rotorcraft. As an airfoil is pitched up, an increasingly adverse pressure 

gradient forms on the upper surface of the airfoil, and a recirculation zone forms 

downstream of the leading edge. Similar to the flow about an impulsively-started 

circular cylinder, an unsteady eruption subsequently occurs on the upstream side of this 

region sending a plume of near-wall vorticity into the external flow. This eruptive spire 

then rolls up to form the primary stall vortex. As the primary stall vortex convects 

downstream along the surface, a second eruption of the near-wall flow is induced near 

midchord. The eruptive plume then rolls over the primary vortex in a strong viscous- 

inviscid interaction. For the duration of the dynamic stall event, when the primary 

vortex remains close to the surface, dramatic increases in lift can be realised. However, 

stall occurs when the vortex detaches from the upper surface of the airfoil and convects 

into the wake causing a significant decrease in lift and a strong pitching moment on the 

airfoil. In some situations, such as rapid flight maneuvers, the first portion of this type 

of event may be desirable in order to enhance lift and performance. On the other hand, 

the strong pitching moment associated with stall can have a serious negative impact on 

the performance of rotorcraft. Stall is also not desirable in turbomachinery where the 

objective is to maintain smooth attached flow over the blades. For more detailed 

discussions of dynamic stall see McCroskey (1982) and Doligalski et al. (1994). 

There are many applications in which unsteady boundary-layer separation is a 

prominent flow feature, but two model problems illustrate many of the generic features 

of the phenomenon and have been the subject of extensive theoretical study; these are 
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the impulsively-started circular cylinder and the rectilinear vortex above a plane wall. 

Many numerical studies of the impulsive start of circular cylinders (see, for example, 

Collins and Dennis, 1973 and Cebeci, 1982, 1986) accurately predicted the flow for 

small times and compared well with experimental investigations (Bouard and 

Coutenceau, 1980). However, significant numerical difficulties were experienced by all 

authors in extending the boundary-layer calculations significantly beyond a stage where 

recirculation developed in the boundary layer. Similar difficulties were encountered at 

large times by Walker (1978) (see also Doligalski and Walker, 1984) when computing 

the boundary-layer evolution induced by a two-dimensional vortex. A common feature 

in all of these studies was the formation of a growing reversed-flow region. 

Eventually, the formation of a region of narrow streamwise extent in the upstream 

portion of the recirculation zone was observed where dramatic increases in boundary- 

layer thickness and displacement velocity occurred just prior to failure of the numerical 

algorithm. 

This apparent difficulty was resolved subsequently by Van Dommelen and 

Shen (1980, 1982). These authors obtained numerical solutions of the boundary-layer 

equations in Lagrangian coordinates, wherein the trajectories of the fluid particles are 

determined; this was in contrast to all of the previous studies where traditional Eulerian 

coordinates were utilized. The Lagrangian formulation of the classical boundary-layer 

equations will be discussed in §2.3; it emerges that fluid motion in the streamwise 

direction in this description (governed by the momentum equation) is decoupled from 

that normal to the surface (governed by the continuity equation). Van Dommelen and 

Shen (1980, 1982) pointed out that the streamwise momentum equation does not 

contain the quantities (y and v) which become large as an eruption initiates, and the 

Lagrangian solution remains regular even after the occurrence of a singularity in the 

continuity equation. An additional advantage of Lagrangian coordinates is that it 

permits an unambiguous criterion for the occurrence of a singularity in the boundary- 

layer solution. Van Dommelen and Shen (1980, 1982) performed a numerical 

calculation for the impulsively-started circular cylinder and found that the boundary- 
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layer solution does develop a singularity at a finite time in which the displacement 

thickness and normal velocity at the outer edge of the boundary layer become 

unbounded. A computation in Lagrangian variables was also carried out by Peridier et 

al. (1991a) for the vortex-induced separation problem. Here again the boundary layer 

evolved toward a sharp eruption resulting in a singularity of the same form as Van 

Dommelen and Shen (1982) for the impulsively-started circular cylinder. These 

classical boundary-layer results will be discussed in §2.4. 

The analytical form of this terminal boundary-layer structure for two- 

dimensional incompressible flows was determined by Van Dommelen and Shen 

(1982) and Elliott et al. (1983), and a detailed discussion will be given in §2.5. This 

structure describes the formation of a sharp spike in the boundary-layer thickness in a 

region which progressively narrows in the streamwise direction to zero thickness as the 

solution evolves toward a singularity at t = ts. In the process the boundary layer 

bifurcates into two essentially passive shear layers above and below an intermediate 

vorticity-depleted region which thickens normal to the surface as the time of the 

singularity is approached. An important characteristic of this terminal state is that the 

structure is ultimately independent of the specific form of the external adverse pressure 

gradient which originally initiated the eruptive process. Consequently, the structure is 

believed to be generic and to apply to most cases of unsteady boundary-layer eruptions 

in two-dimensional incompressible flow at high Reynolds numbers. 

Of course singularities do not exist in real fluid flows, and when they occur in a 

mathematical model, they represent the consequences of neglecting certain physical 

mechanisms which must come into play as a singularity develops. Classical non- 

interacting boundary-layer theory describes the evolution of a thin layer adjacent to the 

surface driven by an inviscid pressure gradient that is generally imposed in a calculation 

for an indefinite period of time. However, the terminal boundary-layer solution 

describes a locally and rapidly thickening boundary layer which at some point must 

begin to alter the outer flow initiating interaction between the viscous boundary layer 
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and the inviscid external flow. This viscous-inviscid interaction may be dealt with in 

two ways namely: (1) a continuation of a limit analysis for infinite Reynolds number 

or (2) conventional interacting boundary-layer theory. 

In the latter technique, a large but finite value of the Reynolds number is 

assumed, and the boundary-layer equations are solved as usual except that the pressure 

(or external velocity), rather than being prescribed, is coupled with the displacement 

thickness (or displacement velocity) through an interaction condition containing a 

Cauchy principal-value integral. This approach has been used by Henkes and Veldman 

(1987), Chuang and Conlisk (1989), Riley and Vasantha (1989) and Peridier et al. 

(1991b) to compute the boundary layers on an impulsively-started circular cylinder and 

along a wall induced by the passage of a vortex. The results have been somewhat 

contradictory, but most suggest that some type of breakdown occurs in this 

formulation as well. Henkes and Veldman (1987) indicate a delay in the onset of 

breakdown when interaction is taken into account (as compared to the limit problem 

Re —> oo). On the other hand, Riley and Vasantha's (1989) calculations apparently did 

not reveal any singular behavior. The results of these studies may be suspect for large 

times because Eulerian coordinates and first-order methods were used for solving the 

Cauchy integral. On the other hand, Peridier et al. (1991b), utilizing Lagrangian 

coordinates, found that interacting boundary-layer theory actually gave rise to a 

singularity at an earlier time than computed without interaction. Chuang and Conlisk 

(1989) also experienced breakdown for a similar vortex-induced separation problem 

using Eulerian coordinates. Both of these investigations utilized second-order accurate 

schemes for the Cauchy integral. The calculations of Peridier et al. (1991b) also 

corroborate the scalings found by Elliott, Cowley and Smith (1983) for the first 

interactive stage to be discussed in §3.2. In addition, Smith (1988b) concluded on 

theoretical grounds that the unsteady interacting boundary-layer formulation could 

breakdown at a finite time and determined the resulting singular structure; the 

numerical results of Peridier et al. (1991b) are in broad agreement with this structure. 

In §2.6 interacting boundary-layer results will be discussed in more detail. 
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The alternative approach is to consider a limit analysis (Re -> °°) to discern the 

appropriate flow regions and their scalings that must develop just prior to the time of 

the singularity in the non-interactive case. Such a limit analysis has been carried out by 

Elliott et al. (1983) for two-dimensional incompressible flows; this is called the first 

interactive stage and a detailed description will be given in chapter 3. The flow regions 

delineated in the terminal boundary-layer structure evolve during this stage subject to an 

interaction condition relating the external pressure (which is imposed across the 

separating boundary layer) and the growing displacement thickness. While the two 

bounding shear layers associated with the terminal solution remain passive, the flow in 

the intermediate region is altered by the effects of interaction. A numerical solution of 

the first interactive stage of unsteady boundary-layer separation was considered in this 

thesis. Due to the recent success of numerical calculations based on Lagrangian 

coordinates (Van Dommelen and Shen, 1980 and Peridier et al, 1991a,b), a solution 

was sought using the Lagrangian formulation for the first interactive stage. The region 

of primary interest is the intermediate layer which is governed by an inviscid 

streamwise momentum equation. Interaction is accounted for by a Cauchy principal- 

value integral relating the pressure distribution in the outer inviscid flow to the 

displacement thickness of the growing boundary layer. The detailed numerical 

procedures and results will be described in chapter 3. 

2.2 Definition of Unsteady Separation 

For steady boundary-layer flows past fixed walls, separation has traditionally 

been defined as implying the existence of a region of reversed flow attached to the 

surface with the point of separation being characterized by vanishing of the wall shear 

stress. This definition, however, is not sufficiently general for application to all cases 

of separation. In particular, flows involving moving surfaces may develop points of 

zero wall shear and even regions of reversed flow but without any dramatic effect on 

the boundary layer (see Sears and Telionis, 1971, 1975).   In such situations the 
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classical criterion for separation, namely vanishing of the wall shear, is often not 

consistent with general concepts of boundary-layer separation that imply a significant 

local alteration of the external flow. This led Sears and Telionis (1971, 1975) to 

propose that separation should be defined in all cases as occurring with the 

development of a singularity in classical (non-interactive) boundary-layer solutions. 

The evolution of a singularity normally signifies that the assumption of a thin non- 

interactive boundary layer is violated. Sears and Telionis (1975) argued that separation 

occurs when a boundary layer breaks away from the surface and is no longer confined 

to an 0(Re'm) layer adjacent to the surface. Such an event signals a breakdown of the 

boundary-layer assumptions. Although modern terminology varies somewhat, most 

authors currently use the terms 'separation,' 'breakdown' or 'breakaway' 

synonymously with the onset of a singularity in a boundary-layer solution. In steady 

flows this takes the form of a Goldstein (1948) singularity at a point of zero wall shear. 

In unsteady flows this singularity has only recently been identified by Van Dommelen 

and Shen (1980) and will be discussed in detail in sections 2.4 and 2.5. 

While this modern definition of separation is clear, a precise criterion for the 

occurrence of the separation singularity is necessary. This criterion has come to be 

known as the MRS model named for Moore (1958), Rott (1956) and Sears (1956). 

The MRS model identifies conditions which must be satisfied at a two-dimensional 

separation point where the boundary-layer solution becomes singular. In general, this 

point may be located away from the surface. Let the location of the separation point be 

(xs,ys) where the streamwise velocity is us; the MRS model specifies two necessary 

conditions that must apply at separation. First, the separation point must move with the 

local flow speed (MRS I) 

us = u(xs,ys), (2.1a) 

where u is the streamwise velocity. Secondly, the separation point must be located at 

a point of zero shear (MRS II); that is, 
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— =0  at   x=xs,y = ys, (2.1b) 
dy 

or equivalently, the separation point must be located somewhere along a line of zero 

vorticity (a> = - du/dy). It should be noted that a zero vorticity line exists in any flow 

containing a region of recirculation. Van Dommelen (1991) argues that because the 

flow is effectively inviscid in the outer region of the boundary layer, the vorticity of 

each fluid particle must remain constant; therefore, the zero vorticity line is also a 

material line. Thus, if there are initial differences in velocity of adjacent fluid particles 

along this line, a streamwise compression must take place; by continuity this 

compression requires a corresponding expansion in the normal direction. 

Observe that for steady flow over stationary surfaces the separation point 

remains fixed, and here the MRS criterion reduces to the classical definition of 

separation, viz. 

^ = 0  at   u = 0. (2.2) 
dy 

Van Dommelen (1981) referred to this type of separation as 'non-slipping separation,' 

because the point of separation is not moving with respect to the wall. He also 

identified two possible types of unsteady separation for us * 0. If the separation point is 

moving upstream with respect to the surface, Van Dommelen (1981) referred to it as 

'upstream-slipping separation;' conversely, cases where the separation point is moving 

downstream with respect to the surface are called 'downstream-slipping separation.' 

Upstream-slipping separation has been observed in many problems including the 

impulsively-started circular cylinder and vortex-induced separation. The case of 

downstream-slipping separation, on the other hand, occurs much less frequently if at 

all. Indeed, in a recent study by Degani and Walker (1994), no cases of downstream- 

slipping separation were observed for either the boundary layer induced by a vortex or 
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the translating and rotating circular cylinder; this latter problem had been conjectured to 

contain both upstream- and downstream-slipping separation because the upper and 

lower surfaces of the rotating cylinder move in opposite directions with respect to the 

mainstream flow. 

2.3 Lagrangian Methods 

Traditionally, solutions to the boundary-layer equations have been sought in 

Eulerian coordinates as given by equations (1.4). In this description of fluid motion, 

flow quantities are evaluated at fixed points in space as functions of time (for an 

unsteady flow). However, in unsteady eruptive flows of the type considered here, 

conventional Eulerian methods generally fail as the flow focuses into a narrow 

streamwise region containing large updrafts. Alternatively, the boundary-layer 

equations may be formulated in Lagrangian variables (Van Dommelen, 1981) in which 

the trajectories and flow quantities are evaluated for a large number of individual fluid 

particles. As discussed in a recent review by Cowley, Van Dommelen and Lam 

(1990), this description of fluid motion has significant advantages over an Eulerian 

formulation in problems involving unsteady separation at high Reynolds numbers. 

In Lagrangian coordinates, the independent variables are time t and the initial 

(at time t0) spatial locations | and 77 of the fluid particles in the streamwise and 

normal directions, respectively. The dependent variables are the current fluid particle 

positions x(£,,r\,i), y(£,77,f) in the streamwise and normal direction with corresponding 

streamwise u{^,r\,t) and normal v{£,,r\,t) velocities. In order to transform from 

Eulerian to Lagrangian coordinates, the following transformation laws are used (see, 

for example, Van Dommelen, 1981 and Peridier and Walker, 1989): 

3 _ 3y  3     3y  3       A_-   —jL   —Ä. (2 3  b) 

The momentum equation (1.4a) then becomes 
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du _    dp 

dt        dx 
dx   d      äx   3 ' 
ß£drj~drj ä|. 

dx 
u,     — = u, (2.4a,b) 

at 

where the convective terras on the left-hand side (given by the substantial derivative in 

Eulerian coordinates) simply represent the acceleration of a fluid particle and are, 

therefore, greatly simplified in the Lagrangian formulation. At the same time, the 

viscous term becomes considerably more complicated The boundary-layer equations 

(2.4) are solved subject to the boundary conditions 

u = 0  at 77 = 0, (2.5a) 

u-^Ue(x,t) as  77->°°, (2.5b) 

where Ue(x,t) is the external streamwise velocity. The initial conditions are 

w = "o(^.77)  at t = tQ, (2.6a) 

x = ^,y = l  at t = t0. (2.6b) 

Examination of the boundary-layer equations (2.4) reveals that the flow in the 

streamwise direction, given by x{t;,r\,i) and u(^,r],t), has apparently been decoupled 

from that in the normal direction. It is evident that at separation, the normal particle 

positions y(%,ri,t) and velocities v{£,,r\,i) become large (Cowley et al, 1990); on the 

other hand, the streamwise particle positions x&rjj) and velocities u(%,ri,t) remain 

regular even at separation. Since the formulation in Eulerian coordinates (1.4) involves 

the normal velocity, numerical calculations normally encounter severe difficulties and 

generally fail as the boundary layer starts to separate from the wall. 

While it is not necessary to evaluate y or v in order to advance the solution of 

equation (2.4) in time, the normal particle positions y(£,ri,t) and velocities v{^,r],t) 
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may be computed at any stage during the calculation from an integration of. the 

continuity equation. The continuity equation in Lagrangian coordinates becomes (Van 

Dommelen, 1981) 

dx dy    dx dy _ 

~ä^ä|+älä^ (2-7) 

This relation is the mathematical statement that the Jacobian of the transformation is 

one and implies that the volume of individual fluid particles is conserved. Since the 

streamwise particle position distribution x{^,f],t) is known from a solution of equation 

(2.4), the continuity equation (2.7) may be regarded as a first-order linear equation for 

the unknown normal particle positions y(%,r},t). Solutions of the continuity equation 

are obtained along characteristic curves which are lines of constant x having the 

equations 

-4i^=^k^y- (2-8) -dxldr\    dx/d%     J ' 

When these characteristics of constant x are plotted against the initial particle locations 

(£77) at a given time, they represent the initial locations of a line of fluid particles which 

are located along the vertical line x = constant at the current time. Defining (£0,77o) to 

be some point along a characteristic at which the normal distance y(£0,?7o,0 is taken to 

be zero (generally at the wall), the normal distance of a fluid particle initially located at 

(£77) may be expressed from (2.8) as 

y&mt) = 

-(in) 

fe„o) slidxidtf + Qxidnf 

From the integral (2.9) it is evident that a fluid particle would be located an infinite 
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distance from the wall if a stationary point develops in the x(^,r],t) field; that is 

uX      ox 
— = — = 0 at Z = £„r) = r\„t = t,. (2.10) 

These conditions for a stationary point in x{^,r\,t) mean physically that two adjacent 

particles initially located an infinitesimal distance d| apart have reached the same x 

position (9x/9| = 0) but without experiencing any rotation (dx/dri = 0). Cowley, Van 

Dommelen and Lam (1990) described this process in terms of a fluid particle which 

has been compressed in the streamwise direction to zero lateral thickness. Continuity 

then requires the fluid particle to expand rapidly in the normal direction. However, the 

boundary-layer equations do not contain normal pressure gradient or viscous diffusion 

effects which would, in principle, act to restrain the normal expansion. Therefore, a 

singularity develops, and fluid particles are forced to grow an infinite distance away 

from the surface (on the boundary-layer scale) toward the external flow. The condition 

(2.10), therefore, provides a criterion for the development of a singularity within the 

boundary-layer equations at (%s,r]s,ts). This unambiguous criterion is another 

significant advantage of the Lagrangian formulation. In the Eulerian formulation there 

is no clear condition for the evolution of a singularity, and in any case the singularity is 

not reachable using the Eulerian approach in light of the severe numerical difficulties 

encountered as the singularity is approached. The asymptotic structure of unsteady 

separation in two-dimensional incompressible flows in terms of Lagrangian 

coordinates has been considered by Van Dommelen and Shen (1982) and for three- 

dimensional compressible flows by Van Dommelen and Cowley (1990) and Cowley 

et al. (1991). 
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2.4 Classical Boundary-Layer Results 

The complex flow involved in unsteady boundary-layer separation generally 

prohibits closed-form analytical solutions from being obtained, and the bulk of the 

theoretical studies have been based on numerical solutions. As discussed in §2.1, 

many unsteady separation studies have been associated with either bluff body or 

vortex-induced flows. A common feature of both environments is the development of 

a region of adverse streamwise pressure gradient over portions of the surface in which 

the unsteady separation process is eventually initiated. Two model problems have been 

studied extensively, namely the impulsively-started circular cylinder and the rectilinear 

vortex above a plane wall. The dynamics for each of these model problems and the 

theoretical investigations related to each will be discussed. 

The impulsively-started circular cylinder has been the subject of study for many 

years due to its simple geometry and the fact that the flow features are representative of 

more complex bluff body flows. When a circular cylinder is impulsively started from 

rest, a thin boundary layer forms on the surface of the cylinder; this layer is initially 

completely attached and exhibits no reversed flow. The inviscid flow solution gives the 

external velocity along the surface as U£x) = 2 sin(x), where x measures radians along 

the surface from the origin at the front stagnation point. Consequendy, the mainstream 

decelerates from x - nil toward a rear stagnation point at x - %, and an adverse 

pressure gradient (dp/dx > 0) is imposed along the rear portion of the cylinder. This 

eventually causes the flow near the rear stagnation point to reverse direction and form a 

small recirculating region attached to the cylinder surface. Defining t to be the 

dimensionless time with respect to a/U0, where a is the radius of the cylinder and U0 is 

its speed, the onset of reversed flow was found from series expansions in time (see, for 

example, Cowley, 1983) to occur at t = 0.32. Such time-series solutions are normally 

valid only for small times, and numerical methods are required to extend the solution to 

larger times. Early attempts at such computations by Collins and Dennis (1973), Bar- 

Lev and Yang (1975) and Cebeci (1979) were carried out in Eulerian coordinates and 
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were successful in advancing the solution well beyond the onset of reversed flow. 

After the wall shear first vanishes near the rear stagnation point, the separation point (in 

the classical sense) moves rapidly upstream as the reversed flow region grows. 

Eventually, the movement of the separation point slows at approximately 110° from 

the front stagnation point, and then the recirculating zone starts to expand significantly 

in the direction normal to the cylinder. These aforementioned studies were able to 

compute the flow up until this stage with varying degrees of success, but all of them 

experienced severe numerical difficulties which in hindsight were suggestive of an 

impending singularity in the boundary-layer equations. 

At the time, it was generally believed that the difficulties were due to inadequate 

numerical algorithms. However, Van Dommelen and Shen (1980) and Van 

Dommelen (1981) finally showed that the problems were associated with the use of 

Eulerian coordinates, and by formulating the boundary-layer equations in Lagrangian 

coordinates (as discussed in §2.3), they were able to compute the flow up until a 

singularity clearly developed at a finite time ts = 1.5 after the impulsive start. The 

impulsively-started circular cylinder was shown to exhibit upstream-slipping separation 

having us = -K, where K = 0.26. The results of Van Dommelen and Shen (1980) 

showed that the boundary-layer solution in the vicinity of the separation point just prior 

to the singularity contracted rapidly in the streamwise direction and developed 

explosive growth away from the wall. Velocity and vorticity profiles from their results 

at the streamwise location corresponding to separation show that the velocity becomes 

nearly constant u~-K (CO = 0) over the bulk of the boundary layer with shear layers 

that develop above and below the central region. 

The evolution of the boundary-layer flow induced by a two-dimensional vortex 

in an otherwise stagnant fluid above an infinite plane wall proceeds in a similar fashion. 

The first numerical solutions of this problem were provided by Walker (1978) and 

were obtained using conventional Eulerian coordinates. In the case of the impulsively- 

started circular cylinder, the adverse pressure gradient is due to the body geometry, 

while in this case it is caused by the presence of the vortex convecting above the 
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surface. Non-dimensionalizing the time by a/Vc, where a is the height of the vortex 

above the wall, and Vc is the self-induced vortex velocity, a recirculating eddy was 

found to develop within the boundary layer at t = 0.28. Unlike the circular cylinder, 

however, the eddy is not attached to the surface but forms away from the surface. The 

eddy subsequently grows in both streamwise and normal extent causing substantial 

growth locally in the displacement thickness. The calculations of Walker (1978) could 

not be continued with good accuracy beyond about t = 0.75. Upon demonstration of 

the advantages of the use of Lagrangian coordinates for these types of flows by Van 

Dommelen and Shen (1980), the problem was revisited by Peridier, Smith and Walker 

(1991a) (see also Peridier and Walker, 1989) who solved the boundary-layer equations 

in Lagrangian variables. This work extended the calculation until t = 0.989 at which 

time a singularity formed. Instantaneous streamlines are shown from their results in 

figure 2.1 for two different times in a frame of reference moving with the vortex; here 

the vortex center is at x = 0, and the vortex is located above the boundary layer. Figure 

2.1a shows the streamlines in the boundary layer at t = 0.45 which is a time after the 

recirculating eddy had previously formed between approximately x = 0 and x = \. The 

eddy subsequently grows, particularly in the normal direction, until the occurrence of a 

singularity (see figure 2.1b) at which time the streamlines just to the left of the eddy 

focus into a narrow streamwise band in the onset of an eruption from the surface. The 

resulting temporal evolution of the displacement thickness of the boundary layer is 

shown in figure 2.2. Again, the flow in the vicinity of separation is seen to collapse to 

zero thickness in the streamwise direction and expand rapidly away from the surface as 

the singularity is approached. The velocity of the separation point was negative, and 

apparently this is another example of upstream-slipping separation. Just as in the case 

of the impulsively-started circular cylinder (Van Dommelen and Shen, 1980), the 

results of Peridier et al. (1991a) reveal a region of nearly constant velocity 

surrounding the separation point which is sandwiched between two shear layers above 

and below. Although the two singularities described here arise in rather different flow 

environments, it has been shown by Van Dommelen and Shen (1982) and Elliott, 
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Figure 2.1 -   Instantaneous streamlines for vortex-induced separation in 
frame of reference moving with vortex located at x = 0; 
(a) t = 0.45; (b) t=u = 0.989. (Reproduced from Peridier, 
Smith and Walker, 1991a). 

38 



Figure 2.2 -   Temporal development of displacement thickness for vortex- 
induced separation. (Reproduced from Peridier, Smith and 
Walker, 1991a) 
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Cowley and Smith (1983) that the form of the singularity itself is probably generic and 

applies to most cases of unsteady separation, regardless of the flow environment in 

which it arises. This work is discussed in the next section. 

Recently, Degani and Walker (1994) have investigated two other model 

problems: the translating and rotating circular cylinder and a vortex convected in a 

uniform flow above a plane wall. Previous investigations of each of these problems 

were carried out by Ece et al. (1984) and Doligalski and Walker (1984), respectively, 

both using the Eulerian formulation. Using Lagrangian coordinates, Degani and 

Walker (1994) showed that in both problems the onset of the unsteady separation 

singularity is delayed, and eventually suppressed, with increasing wall speed. 

Interestingly, the critical wall speed at which separation was suppressed was found to 

be just less than the maximum external velocity in both model problems. In all cases 

considered by Degani and Walker (1994), separation was found to be of the upstream- 

slipping type. 

2.5 Terminal Boundary-Layer Solution 

2.5.1 Form of the Terminal Singularity 

The numerical results of Van Dommelen and Shen (1980) showed that a 

singularity can occur in the boundary-layer equations within a finite time, and this 

prompted Van Dommelen and Shen (1982) and Elliott et al. (1983) to seek a local 

analytical description of the separation singularity which is referred to here as the 

terminal boundary-layer structure or, equivalently, as the non-interactive singularity. 

Van Dommelen and Shen (1982) argued that the streamwise particle position field in 

Lagrangian coordinates should remain regular up to the time of separation; they then 

constructed a local Taylor series expansion for the momentum equation near the point 

of separation and represented the solution of the continuity equation (which becomes 
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Singular) as an asymptotic series (see also Cowley, Van Dommelen and Lam 1990). 

Alternatively, Elliott etal. (1983) obtained the same structure in Eulerian coordinates. 

A detailed description of the terminal solution is given here because it constitutes the 

initial condition for the first interactive stage to be considered in the next chapter. 

Taking x and y to be the streamwise and normal coordinates and u and v to 

be the velocities in their respective directions, scaled boundary-layer variables are 

defined, 

Y=Remy,     V=Remv, (2.11) 

so that Y and V are 0(1) within the boundary layer.  The streamfunction is defined 

by 

"°S-   v=-ä? (2'12) 

such that the continuity equation is satisfied.  In terms of the scaled variables, the 

unsteady incompressible boundary-layer equations are 

du       du    d\lf du       dp     du dty 

where p(x,t) is the mainstream pressure distribution determined from an inviscid 

solution. 

Assuming that a singularity develops in the solution of the boundary-layer 

equations at ts, a temporal similarity solution is sought as t-*ts in the immediate 

vicinity of the moving separation point. At t = ts the separation point is located at xs 

and for upstream-slipping separation is assumed to be drifting with constant velocity 

- K where K > 0. In accordance with the numerical solutions of the boundary-layer 

equations by Van Dommelen and Shen (1980, 1982) (see also Peridier et al, 1991a), 
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it is evident that the boundary layer is thickening rapidly in a region which is thinning in 

the streamwise direction just prior to separation. Therefore, consider the following 

scaled variables which describe the motion in a moving region which progressively 

thins and eventually arrives at the separation location at x = xs as t -> ts: 

x=xs + K{t-t) + {ts-tfX,     M>0, (2.14a) 

Y=(ts-tJNY,     N>0, (2.14b) 

u=-K + (ts-tfU(X,Y) + -,     L>0, (2.14c) 

where X, Y and Ü are 0(1) in the region of interest and L, M and iV are to be 

determined. These variables describe a moving coordinate system which drifts 

upstream with constant velocity - K with the origin arriving at the separation point xs at 

time ts. Since dx/dt = w it follows from (2.14a) and (2.14c) that 

L = M-l,     M>\. (2.15) 

An expression for the streamfunction may be obtained by integrating equation (2.13b) 

using equations (2.14b,c) to give 

¥=-K(ts-t)-NY+(ts-t)M-N-i:r,     U = ^£. (2.16) 

Substitution of the transformations (2.14) and (2.16), with the relationship 

between L and M from equation (2.15), into the boundary-layer equations (2.13) 

shows that the magnitudes of the unsteady, inertial, pressure gradient and viscous 

terms are 0(ts - t)M'\ 0(ts - t)M'\ 0(ts - tf and 0(ts - tfN+M~\ respectively. Therefore, 

as t -> ts the viscous term is negligible with respect to the pressure gradient term, and 
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the principal balance is inviscid. Furthermore, a balance between the unsteady 

convection terms and the pressure gradient is only possible if M = 2; however, 

solutions where 1 < M < 2 represent a larger streamwise scale and would dominate if 

they exist. It will subsequently be assumed that 1 < M < 2, and such solutions will be 

shown to occur. In this case the boundary-layer equations become 

(M-l)ü+MXd4-NY^ + üd-»-d-iM=0,     Ü = K     (2.17a,b) 
dX dY       dX    dX dY dY 

constituting a first-order nonlinear equation for UQC,Y) which is independent of the 

mainstream pressure gradient. Generally, the presence of an adverse external pressure 

gradient initiates the eruptive process; however, the singular flow structure which 

results is generic, and the terminal solution apparently "forgets" the initiating pressure 

gradient. Solutions to equations (2.17) were originally given by Elliott et al. (1983); 

an alternative method of solution is given in appendix A where it is shown that 

^=±!^ ,     ^ = !L, (2.18a,b) 
dY cm Y    \U+X\' 

where G is a strictly positive function. Integration of equation (2.18a) for fixed X 

gives 

Y- f(X) = sgn(x)f G(0)| U \~n+NKM'1)]dU. (2.19) 
Jim 

Here, Y0QC) is the location where T = 0 and where the velocity Ü is a minimum 

denoted by U0(X). It then remains to determine the unknown functions UQ(X), Y0(X) 

and G(0) as well as the scales M and Nonx and Y, respectively. 

Because Y0(X) defines a line of zero shear, and because U0(X) is in general 
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non-zero, equation (2.18a) requires that G(0) -> °° for values of (j) such that 

lt/o 
iMK.M-1) 

0-^0 = ',' >0 (2.20) 

along the reference line. For given values of $>, (2.20) defines an equation for Ü0 in 

terms of X, but different branches are possible depending on the signs of Ü0 and 

Ü0 + X. However, in order for ÜQ(X) to be a single-valued function of X, only the 

following branches are possible 

ÜQ
MnM-1) + <l>0{Ü0 + X) = 0     for £70>0, 00 + X<0, (2.21a) 

(_Qf/(M-1)_0o(L/o + X) = O for Ü0<0,Ü0+X>0. (2.21b) 

Recalling that M > 1, and recognizing from equations (2.21) that 

U0~-X    as   £-»0, (2.22) 

the exponent M/(M -1) must be an integer greater than one; this is because the 

alternative is not acceptable implying an infinite derivative of U0(X) at X = 0. 

Furthermore, MI{M - 1) must be odd in order to have a unique Ü0(X) for each X, and 

thus equations (2.21a,b) may be written as the single equation 

Ü0
MHM-1) + <po{Üo + X) = 0,     0o >0. (2.23) 

Therefore, the choices for the scale on x are narrowed to 

M = I11... (2 24) M    2'4' 6' K      J 
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which all lie in the range 1 < M < 2 as assumed. 

As noted previously, the function G must be such that G(0) —» °° as 0 —> 0O 

suggesting that 

as  0-></>o, (2.25) 

where G! and qx are constants to be found.   To determine qx the Taylor series 

expansions of (j) and Ü are written for points close to the reference line and fixed X as 

0-0o=(c?-ey|| + (2.26) 

~     -,     , ~     ~, du 
+ 

[Y-YtfJÜ 
ar (2.27) 

Substituting the expansion (2.26) for 0 into equation (2.25), and observing the form 

of the shear stress from the leading-order term of (2.27), equation (2.18a) indicates that 

Y-%~{Ü-Üoy-qi + -   as  Y^Y0. (2.28) 

Because the shear stress is zero along the reference line, substitution of equation (2.28) 

into the expansion (2.27) for 0 requires the exponent to be qx = 111. It can also be 

shown from considerations of the solution near the top and bottom of the domain, 

which will be discussed in the next section, that G(°°) must be finite and nonzero. 

These conditions on G(0) along with the regularity condition of Van Dommelen 

(1981) lead to the simplest choice acceptable for G(0) 
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™=ifh;Y- (2.29) 

where A is an arbitrary constant. 

Finally, it remains to determine N, the scale on Y. Begin by expanding the 

integral in equation (2.18b) (referred to here as I) about the reference line velocity 

Ü = Ü0(X) and substituting the expression (2.25) for G(0) near the reference line to 

give 

Y-% = {Ü-Ü0) 
dl_ 

du + =±{ü-üM\ 
■ll+NKM-l)] Gl 

(0-0o) 
1/2 + (2.30) 

In order to substitute the expansion (2.26) for 0, the derivative of 0 with respect to U 

must be evaluated at Ü = Ü0(X). Differentiating (2.19), taking care to deal with the 

absolute values, it is found that 

30        [MX + Ü)\Ü 
\M/(M-1) 

dÜ    (M-l)Ü\Ü + X\{Ü + X)' 
(2.31) 

Evaluating equation (2.31) at Ü = Ü0(X), recalling that M/(M - 1) is an odd integer and 

using the expression for U0 + X from equation (2.23), the expansion (2.26) for (j) 

becomes 

A        J. fr~r        /n   A2  T~ ' ~2 M   IM X + Ü0) 

M -1 
(2.32) 

Substitution of this expansion into (2.30) gives 

Y-% = ±fo{M-l) 1/2 ( u-u0) 
[MX + UJ 

1/2 

a [l + N/(M-l)) 2M- 1 
m(M-D + (2.33) 
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If this expression is rewritten in terms of Ü - Ü0, and using the behavior of Ü0 asX -> 0 

given by equation (2.22), the expansion for U may be written as 

Ü-Ü0 = ^X\xf^-[Y-%f + -,     X-^0. (2.34) 

Consequently, in order to avoid singularities at % = 0, the exponent must be such that 

1^=1=-1,0,1,2,..., (2.35) 

and thus there are an infinite number of possibilities for the scales M and N. 

However, it is the lowest order singularity, the one with the slowest growth rate 

(smallest N), which is of interest. It follows from equations (2.24) and (2.35) that 

M = |,     N = ± (2.36) 

Having determined the scales (2.36) and the function G(0), it is possible to 

return to the terminal-state transformations and the solution of the terminal boundary- 

layer equation. The constants 0O and A appearing in equation (2.29) may be scaled out 

by redefining the transformation in equations (2.14a,b,c) according to 

x=xs + K(ts-t) + (ts - tfn 0j/2 X, (2.37a) 

Y=(fs-t)-wAfcm£ (2.37b) 

u=-K + {%- tj12 0o'2 U(X,Y) + ■ ■ ■. (2.37c) 

Having chosen the form of G((p) given by equation (2.29), this along with equation 

(2.19) for <p, may be substituted into the solution (2.18a) or (2.18b) of the terminal 
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boundary-layer equation.   Recalling the appropriate signs from (2.21a,b) for the 

quantities within the absolute values, the solution becomes 

T=M=±(Ü\Ü + Xj'2, (2.38a) 

or in integral form 

F-^ = sgn(T) 
*o 

f-3   y  -vfl- (2.38b) 
Oo[u3 + u + x) 

At this point in the development of the terminal boundary-layer solution, it is 

instructive to discuss the significance of the reference line height %(X) and the 

streamwise velocity Ü0(X) along this line. Until now %(X) has been defined as the 

height at each X at which a minimum in the streamwise velocity profile occurs, 

corresponding to a line of zero shear. Because the minimum for each velocity profile 

occurs along this line, the shear stress must be positive @U/dY>0) above the reference 

line (F > %(X)) and negative (dU/dY<0) below it (Y < %(X)). Therefore, integration of 

equation (2.38b) from the reference line velocity Ü0(X) to some value of Ü results in 

two values of Y which are equidistant from the reference line, and as a result the curve 

%(X) is the center line of the inviscid region, about which the flow is symmetric. The 

solution then applies in the range 0 < %(X) < 2Y0(X). However, the solution in the 

inviscid region is not uniformly valid since it cannot satisfy either the no-slip condition 

at the wall or the matching condition to the mainstream for large Y. Note that the 

transformation for the streamwise velocity (2.37c) suggests that Ü must become very 

large as Y -> 0 and Y -> 2%{X) to overcome the small factor (ts-t)m and adjust the 

drift velocity - K to the no-slip condition and the mainstream velocity, respectively. 

Because Ü -> °° as Y -» 0 and Y -»2%(X), in both cases the solution (2.38b) provides 
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that 

%(X) = dU 
(ü3 + ü+x) 1/2' (2.39) 

which is the equation defining the central line. In addition, because the shear stress is 

zero along the central line, equation (2.38 a) requires the stream wise velocity along the 

central line to satisfy 

Ü0+Ü0 + X = 0. (2.40) 

The solution to this cubic equation is (see Abramowitz and Stegun, 1964) 

U0(X) = 
2\V2~ 

2    127     4)  . 

1/3 

+ X 
2 

f ~2\112' 

127     4 

1/3 

(2.41) 

Observe that the behavior of this equation as X -> 0 agrees with the result (2.22). 

Integrals, such as (2.38b) and (2.39), involving the inverse of the square root of 

a cubic polynomial may be rewritten in terms of elliptic integrals. For the current case, 

the polynomial has only one real root Ü = U0(X) in which case Abramowitz and Stegun 

(1964) indicate the transformation 

cosö = 
Ü-Üp- A2 

Ü- Ü + A2' 
(2.42) 

where 

Aj=(3tf+ir. (2.43) 
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Substitution of (2.42) into the equation for the central line (2.39) gives 

%(x) 4 fl      
d6> 2f#n = J F[f |«) = I *H (2-44) 

where F is the incomplete elliptic integral of the first kind, K is the complete elliptic 

integral of the first kind and 

m=sin2a = i-^|. (2.45) 
2    4A 

Similarly, the equation for the velocity distribution (2.38b) may be transformed to 

dz \%{X)-^F[e\m\   O<0<! /•it 

Y-%{X) = \ 
(l-msin2z)1/2    j -^ F[6-K\m),      f<Ö<7r' 

(2.46) 

Thus, the terminal boundary-layer solution has been reduced to equation (2.46) with 

(2.42), (2.43) and (2.45) for the stream wise velocity distribution 0. The domain is 

bisected by the curve %(X) given by equation (2.44) along which the velocity Uo0t) is 

given by (2.41). 

2.5.2 Properties of the Terminal Solution 

The above solution describes the flow in the immediate vicinity of the 

separation point as t -> ts in a reference frame moving with the fluid particle that 

becomes laterally compressed to zero thickness &st->ts; this is the physical nature of 

the singularity in the solution which occurs somewhere off the surface along a line of 

zero vorticity, according to the MRS conditions. The theoretical picture that ensues is 

illustrated in figure 2.3, where the streamwise scale of the eruptive spike (see figure 2.2 
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Figure 2.3 - Schematic of the terminal boundary-layer structure near xs 

(not to scale). 

for example) has been greatly exaggerated for illustrative purposes. As the boundary 

layer evolves toward the terminal state, it bifurcates into two shear layers (regions I and 

El) above and below the central inviscid region (region II). A typical velocity profile 

across the boundary layer is shown in the figure indicating that the velocity is nearly 

constant across the central region and is adjusted across the shear layers to the 

mainstream and wall velocities. Due to the nature of the velocity distribution, region II 

is sometimes referred to as a vorticity-depleted or dead-water region which is reflected 

in the expansion (2.37c) for the velocity near xs. While the shear layers remain passive 

and thin of 0(Re'm) as t —> ts, the dead-water zone contracts in the streamwise direction 

proportional to (ts - if12 and expands proportional to (ts - t)~w in the normal direction. It 

should be remembered that this structure is completely contained within the initially 

thin boundary layer. As the singularity develops, a displacement thickness spike forms 

and fluid particles in the upper part of the boundary layer will ultimately be located an 

infinite distance from the wall on the boundary-layer scale. However, this phenomena 
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appears as a small sharp spike in the boundary layer on the physical scale. 

Keeping this overall picture in mind, focus returns to the central region (region 

II) which drives the boundary layer into the singularity. The most significant 

characteristic of the terminal solution in region II is that the structure is independent of 

the pressure gradient in the external mainstream. Although an adverse pressure 

gradient is an essential precursor to an unsteady boundary-layer eruption, the boundary 

layer evolves into a generic singular state which is believed to be common to most 

cases of eruption of two-dimensional unsteady incompressible boundaiy layers. 

It is worthwhile to consider in more detail the velocity distributions throughout 

the dead-water zone. The streamwise velocity is determined from a numerical solution 

of equation (2.46) with (2.42), (2.43) and (2.45), which is discussed in §3.3. Velocity 

profiles from such a solution are shown in figure 2.4 at a few X locations. As 

mentioned previously, the velocity becomes very large at the top and bottom of the 

domain in order to match to the shear layers (regions I and HI). Near the central line 

%(X) the velocity is positive for X < 0 and negative for X > 0. Therefore, the flow is 

focusing toward the point [X,Y] = (0,^(0)) which is the eventual separation point. By 

continuity, the boundary layer must thicken near X = 0. As | X | -»<», the streamwise 

velocity along the central line from (2.42) is 

00(X) ~-Xm  as |£|->oo (2.47) 

and becomes very large in order to overcome the small factor (ts-t)m in the 

transformation and thereby adjust u from -K io match the conventional boundary 

layer upstream and downstream of the spike. In equation (2.39) 0 may be neglected 

compared to U to leading order, and at upstream and downstream infinity a similarity 

solution is easily found which is of the form 

Ü = U(v)\X\m, (2.48) 
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12.0 

2.00 

Figure 2.4 - Velocity profiles for the terminal boundary-layer solution. 
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where 77 is a similarity variable defined by 

77 = ?|J?r. (2.49) 

The function U{T}) is determined from a solution of 

U-A*(*>*).  o<ö*<f 
v-% = 

31/4 

l-4F[e*-%\m), %<#<* 
(2.50a) 

31/4 

where 6* and r?0 are defined by 

cos0 = 7=, (2.50b) 

770 = ^ü:(m*), (2.50c) 

and the constants b and m* depend on whether X->°° or X -> - °° in the following 

way 

• 00 sin2 m\   X->< 
m' = <      2 "I!     „ , (2.50(1) 

sin n> *->— 

f 4- 1        Y —^ oo 
* =        '    « • (2-50e) 

-1,      X->-~ 

The form of the velocity as F -» 0 and F -» 2^(X) is also of interest. From the 

solutions of the terminal boundary-layer equation in integral form (2.38b) and the 

central line height (2.40), the solution above the central line may be written as 
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2Yn-Y = 
o 

,,3   y   „,lfl,     Y>Y0(X) (2.51a) 
[U +U + X) 

and below the central line as 

Y = ,„,   d?   „,m,     Y<Y0(X). (2.51b) 
[U +U + X) 

Recalling that Ü -> °° as F -> 0,21£(X), the integrands in (2.51a,b) are proportional to 

Ü~m. Thus, integration provides the form of the velocity required to match the shear 

layers above and below the central region to be 

Ü~,M 
4 „2       as  f->2f0(Z), (2.52a) 

(y-2?0)
2 

Ü~4ö as  F^O. (2.52b) 
Y 

These are the matching conditions to the shear layers above and below region II. 

Consequently, the central region is characterized by unbounded perturbation 

stream wise velocities on all four sides. 

At this point it is worthwhile to discuss numerical confirmation of the terminal 

boundary-layer solution. To date boundary-layer computations have been carried out 

up to the time of the terminal singularity for two model problems. The impulsively- 

started circular cylinder was investigated by Van Dommelen and Shen (1982), and a 

vortex-induced boundary layer was studied by Peridier et al. (1991a). In both cases 

an eruptive singularity occurred within a finite time which was characterized by the 

formation of a sharp spike in the displacement thickness (see, for example, figure 2.2). 
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The numerical results for times just prior to t = ts corroborate the analytically obtained 

structure described above in both cases. Constant vorticity contours reveal the 

formation of a zero vorticity line (which is required by the MRS conditions for 

separation) and an eventual concentration of constant vorticity contours comprising the 

upper shear layer (region HI). Velocity profiles near the separation point also reveal the 

upper and lower shear layers surrounding the vorticity-depleted region where the 

velocity is nearly constant. A minimum in the velocity is also evident within the dead- 

water zone. In addition to these qualitative features, Peridier et al. (1991a) used a 

least-squares curve fit to determine the growth rate of the maximum in displacement 

thickness just prior to the singularity. They found the growth rate to be 

N = 0.253±0.003 , which is in good agreement with the analytically determined value 

N = 1/4. The fact that these different flows evolve toward the same terminal state 

supports the expectation that the terminal boundary-layer solution is generic and is 

independent of the pressure gradient, which initiated the unsteady separation process. 

2.6 Interacting Boundary-Layer Results 

The primary question that arises from the preceding discussion of unsteady 

separation concerns the effect that the eventual interaction with the external inviscid 

flow has on the erupting boundary layer as the singularity is approached. Such a 

viscous-inviscid interaction must become important at some time prior to the non- 

interactive singularity time ts in order to prevent actual formation of the singularity. 

Due to previous success realized in relieving the Goldstein singularity for steady 

boundary-layer flows, interacting boundary-layer (IBL) theory would seem to be a 

natural framework in which to interrogate this issue. Indeed, IBL theory was the basis 

for some of the first studies of the effect of viscous-inviscid interaction on unsteady 

separation. In this approach, discussed in §1.2, a large but finite value of the Reynolds 

number is assumed, and the boundary-layer equations are solved as usual except that 

the pressure, rather than being prescribed as in classical boundary-layer theory, is 
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coupled with the displacement thickness of the boundary layer through an interaction 

condition. For incompressible flows this condition involves a Cauchy principal-value 

integral of the normal velocity or displacement thickness induced by the boundary 

layer. 

There have only been a few studies of unsteady separation using interacting 

boundary-layer theory to date, and the results have been somewhat contradictory. The 

first such study was carried out by Henkes and Veldman (1987) for the impulsively- 

started circular cylinder. They concluded on the basis of their results obtained in 

Eulerian coordinates that the influence of viscous-inviscid interaction at least delays the 

onset of the singularity. Their numerical results, however, exhibit large oscillations in 

the calculated results (particularly displacement thickness) for times prior to the 

corresponding non-interactive singularity time; relatively coarse meshes were used, and 

their results do not seem to be grid independent at least for larger times. A similar 

conclusion was arrived at by Chuang and Conlisk (1989) who considered the boundary 

layer induced by a rectilinear vortex convected in a uniform flow above a wall. These 

authors also used Eulerian coordinates and were able to extend the numerical 

calculations farther in time than for a non-interactive Eulerian calculation; one important 

result of this study was the recognition that first-order methods for the evaluation of the 

Cauchy integral seem to be inadequate as the interaction develops. It should be noted 

that the conclusion of Chuang and Conlisk (1989) that there is a delay in the onset of 

breakdown was based on the authors' ability to carry the interactive calculations further 

in time than their non-interactive Eulerian calculation with the same basic algorithm. 

However, it was not possible to extend the calculations beyond the time when the non- 

interactive solution obtained in Lagrangian coordinates becomes singular. On the other 

hand, the interactive calculations of Riley and Vasantha (1989) were continued well 

beyond the times of the non-interactive singularity, and they did not seem to encounter 

any breakdown at all. All of the above mentioned studies utilized the conventional 

Eulerian formulation of the boundary-layer problem, and some used numerical 

algorithms of relatively low accuracy which may have acted to smooth out the small- 
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scale separation process. For these reasons the results of these studies are potentially 

suspect for large times and are certainly inconclusive in terms of clearly defining the 

effect of viscous-inviscid interaction on the unsteady separation process. 

The first investigation to carry out an interactive calculation in Lagrangian 

coordinates was performed by Peridier, Smith and Walker (1991b) who considered the 

boundary layer induced by a rectilinear vortex above an infinite plane wall in an 

otherwise stagnant fluid; in contrast to the previous studies, these interacting boundary- 

layer calculations clearly terminated in a singularity at times prior to the non-interactive 

singularity time. This hastening of breakdown was increasingly pronounced as the 

Reynolds number was decreased. As would be expected, the flow development 

closely paralleled that of the non-interactive case (see Peridier et al, 1991a) until times 

at which a strong interaction develops. The interaction was found to have an influence 

on the secondary eddy observed in the non-interactive case (see figure 2.1); at moderate 

Reynolds numbers the secondary eddy split into two co-rotating eddies, and a tertiary 

eddy was observed to form just upstream of the eruptive spike. As the Reynolds 

number is decreased, the size of the secondary eddy is reduced, while the tertiary eddy 

becomes increasingly prominent and causes an additional secondary spike to form in 

the displacement thickness. Although the development of the eruption that occurs was 

found to be qualitatively similar to that of the non-interactive case, the streamwise 

extent of the spike, while still small, thickens with decreasing Reynolds number. In 

addition, as the Reynolds number is reduced, the wall shear and pressure distributions 

develop severe local distortions as the singularity is approached, and the mainstream 

speed departs increasingly from the steady solution associated with the infinite 

Reynolds number case. 

The possibility of an unsteady interactive singularity occurring within a finite 

time has been considered by Smith (1988b). This analytical study is a generalization of 

a special case considered by Brotherton-Ratcliffe and Smith (1987), and the analysis 

applies to two- and three-dimensional flows in both the subsonic and supersonic 

regimes which are considered within the framework of either conventional unsteady 

58 



interacting boundary-layer theory (see §1.2) or triple-deck theory (see §1.3). A 

'moderate' and a 'severe' type break-up were found, but only the moderate type will be 

discussed here as it is believed to be the most common. A singularity was assumed to 

develop in the interactive formulation at time t = ts and streamwise location x = xs, and 

the singular structure moves downstream with speed c (Smith, 1988b). The 

streamwise variable describing a local region near the singularity is 

x-xs = -c(ts-t) + (ts-tf2%, (2.52) 

where t, is 0(1). The structure as t-¥t~ is similar schematically to that of the 

terminal boundary-layer structure shown in figure 2.3; however, instead of a flat profile 

in the central inviscid zone, the profile is generally rotational. The normal extent of the 

main, or intermediate, zone is 0(Re~m) and those of the viscous wall layer and upper 

critical layer bounding the inviscid region are 0(Rem {ts - f)3/4) and 0(Re'm (ts -t) ), 

respectively. A critical layer occurs where the streamwise velocity u is exactly 

balanced by the assumed speed of the singularity. As the singularity forms, the 

pressure distribution near xs develops a local distortion of the form 

p-Po = 0((x-xf3) as x-*x„ (2.53) 

where p0 is a constant. The break-up causes the maximum values in pressure 

gradient, normal velocity and wall shear stress to become singular in a manner having 

the following forms 

(2.54) 

as t -> ts. The numerical results of Peridier et al. (1991b) were in broad agreement 

with equations (2.54). It emerges from the analysis of Smith (1988b) that the leading- 

order criterion for this break-up is 
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c2 

ts-t' 
r            c' 
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1 w£rft 

where the integration is carried out across the boundary layer and u(Y) is the profile at 

x = xs. It is believed that this unsteady interactive singularity may be relieved through 

the action of normal pressure gradient effects (Smith, 1988b and Hoyle, Smith and 

Walker, 1991) which are not accounted for in either interacting boundary-layer theory 

nor the triple deck. The relationship between this new interactive singularity and the 

terminal singularity of the non-interactive boundary-layer problem is unfortunately not 

known at present. 
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3. The First Interactive Stage 

3.1 Introduction 

The terminal boundary-layer solution derived in §2.5 describes the local flow 

structure as an eruption develops and a singularity subsequently forms in the classical 

(non-interactive) boundary-layer formulation. The onset of the eruption can be initiated 

by a variety of mainstream pressure distributions which contain a region of adverse 

streamwise pressure gradient; however, the terminal structure is independent, to leading 

order, of the particular form of the initiating pressure gradient. Consequently, the 

terminal solution is believed to describe a generic structure which is expected to form 

whenever a two-dimensional incompressible boundary layer exhibits eruptive behavior, 

at least in the case of upstream-slipping separation (see Van Dommelen, 1981). 

Because of this, the subsequent stages of development determined through limit 

analyses are expected to apply to a variety of situations corresponding to different 

geometries and/or mainstream conditions. 

Realistic solutions of the Navier-Stokes equations cannot contain singularities; 

therefore, the occurrence of a singularity in a reduced set of equations indicates that 

terms in the Navier-Stokes equations which were originally neglected are becoming 

significant as a new physical process begins to develop. In the problem under 

consideration, the terminal boundary-layer structure describes a rapid growth and 

eventual singularity in the displacement thickness indicating that the classical boundary- 

layer equations (which assume an attached thin boundary layer) must fail to correctly 

describe the situation at some stage. As a result, the problem must be reformulated in a 

local region near the developing spike for times in advance of the formation of the 

singularity. The next stage, called the first interactive stage, accounts for the inevitable 

viscous-inviscid interaction which must take place as the boundary layer progressively 

starts to leave the surface.  This stage has been formulated by Elliott, Cowley and 
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Smith (1983) in traditional Eulerian coordinates, and a description of the problem 

follows in §3.2.1. Unfortunately, there are severe numerical difficulties that are 

encountered in trying to solve the Eulerian problem. On the other hand, success has 

been achieved recently in the calculation of eruptive boundary-layer flows utilizing 

Lagrangian coordinates (see Van Dommelen and Shen, 1980 and Peridier et ai, 

1991a,b). The problem for the first interactive stage is reformulated in terms of 

Lagrangian variables in §3.2.2. It will be shown that the evolution of the first 

interactive stage is governed by the inviscid streamwise momentum equation subject to 

a viscous-inviscid interaction condition. This interaction condition is a Cauchy 

principal-value integral relating the pressure distribution in the outer inviscid flow to the 

displacement thickness of the thickening boundary layer. Determination of the 

displacement thickness requires integration of the continuity equation (which in 

Lagrangian coordinates is a first-order linear partial differential equation) along 

characteristic curves describing lines of constant streamwise particle positions. The 

numerical procedures used for the present calculations are discussed in §3.3 followed 

by a discussion of the results in §3.4 and §3.5. 

3.2 Formulation of the First Interactive Stage 

3.2.1 Eulerian Formulation 

For an attached laminar boundary layer, the normal velocity induces 

perturbations in the outer inviscid flow; for a boundary layer having a thickness 

8= 0(Re~m), these perturbations are generally small as discussed in appendix B (cf. 

equations (B.3)). As shown in equations (B.5) and (B.6), the motion induced at the 

boundary-layer edge is closely related to the boundary-layer displacement thickness. 

As the displacement thickness grows and evolves toward a singularity, an interaction 

must eventually develop between the thickening viscous boundary layer and the outer 

inviscid flow. Here, the task is to ascertain the time scale over which this interaction 
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first occurs just prior to the formation of this singularity. Recall from §2.5 that as 

t->ts, the unsteady convective terms in the streamwise momentum equation are 

0[(ts-t)~m] and dominate the pressure gradient term, which is 0(1), and the viscous 

terms, which are 0(ts-t). Here, the time scale is sought for which the pressure 

gradient first balances the convection terms and interaction effects therefore become 

important. To this end, the mainstream pressure at the surface is expanded according 

to 

p=p0+Re    Pi + ---, (3-1) 

where in general p0 is the leading-order inviscid pressure, and px is the pressure 

perturbation in the external flow induced by the boundary layer. Since the streamwise 

extent of the developing eruption is very narrow, the leading term in the expansion 

(3.1) may be taken to be a constant corresponding to the local value at x = 0; here, 

separation is assumed to occur at time ts at x = 0. A general formulation for the 

induced pressure gradient is given in appendix B. Since the interaction is localized near 

x = 0, Ue(x) may be replaced in equation (B.18) by the local value t/e(0), and it follows 

that 

ox 
_i/2 dö       .iß d S 

Re    —r-, Re 
V dx2' oxdt 

(3.2) 

where only the most highly differentiated terms on the right side of equation (B.18) 

have been retained. It is readily inferred from the discussion in §2.5 and figure 2.3 that 

the dominant contribution to displacement thickness 5* is associated with the 

expanding central region and 

* = ({<X-tTwWQ\ (3-3) 

It then follows from equations (2.37), (3.2) and (3.3) that 
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^-=d(Re-l\-tfm\ (3.4) 
dx 

-l/2n as t -» ts. Consequently, a balance with the convective terms, which are 0[(ts -1)   ], 

occurs when 

(ts-t) = 0{Re-mi). (3.5) 

Therefore, interaction does not become significant until a very short time before a 

singularity forms in the solution of the non-interactive problem. Events that occur on 

this short time scale are referred to as taking place in the first interactive stage and 

evidently must occur rapidly in order to prevent formation of the singularity. 

During the first interactive stage the upper and lower shear layers remain 

essentially passive having a thickness 0(Rem), while the pressure distribution induced 

by the interaction begins to alter the flow in the intermediate region II (cf. figure 2.3) 

between the shear layers. It follows from equations (2.37a) and (3.5) that the 

streamwise extent of the interactive zone in this stage is 0(Re'3/n); in addition, since 

y = Rem Y it follows from equation (2.37b) that the normal extent of the intermediate 

region II expands to become 0(Re'5'n). These considerations suggest the following 

definitions of new independent variables for the central region n in the first interactive 

stage: 

x-xs = K(ts-t) + Re-vn <T*„     y = Re~5/n A ^ ?„     t-ts = Re'mi lh  (3.6a,b,c) 

where the factors of 0O and A (associated with the terminal solution) are inserted for 

convenience in equations (3.6) to be consistent with the variables in the previous stage 

defined in equations (2.37). It also follows from equations (2.37c) and (3.5) that the 

streamwise velocity and pressure during the first interactive stage have the following 

expansions 
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u=-K + Relin 0o ü,(x„Y„tiX     P=Ps + Re     0oPfaJJ,),       (3.7a,b) 

where again the factors involving the constant </>0 in the terminal solution are inserted 

for convenience; here, ps denotes the mainstream pressure evaluated as x -> xs. The 

streamwise and time scales (3.6a,c) were first proposed by Elliot et al. (1983) and 

seem to have been confirmed by Peridier et al. (1991b) in their numerical solutions 

for the vortex-induced separation problem. Substitution of the scaled variables (3.6) 

and (3.7) into the Navier-Stokes equations yields the governing equations in region II 

for the infinite Reynolds number limit: 

(3.8a,b) 
du,     _  du,     d\jf, dui        dp, 

dt,      ' dx,     dx, df,        dx,' "'" df, 

df,    U' 
(3-9) 

where ijf, is a perturbation streamfunction. These equations describe the evolution of 

the flow in the thickening central region II (shown in figure 3.1) between Y, = 0 and the 

upper shear layer at Y, = ß,(x,,t,) which is to be found as part of the solution of the first 

interactive stage. Note that the problem in the central region is non-linear and inviscid. 

The solution of equations (3.8) and (3.9) on the interactive time scale must 

match as t, -> -°° to the terminal boundary-layer solution as t->t~. Relating the 

interactive variables defined by equations (3.6a,b,c) and (3.7a) with the variables 

(2.37a,b,c) for the terminal solution yields the following: 

x, = (- t,)m t     Y, = (- l,ym Y,     ü,(x„Y,;t,) = (- t,)m Ü(X,Y).   (3.10a,b,c) 

These equations serve to relate the solution in the first interactive stage to that of the 

terminal boundary-layer solution and provide initial conditions for large negative 1,. 

Note that for fixed values of X and Y, x, increases and f, decreases as ~t, -> -°° 
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Figure 3.1 - Schematic of the first interactive stage of unsteady boundary- 
layer separation. 

indicating that region II broadens in the streamwise direction and shrinks in the normal 

direction as time is decreased. Likewise, the perturbation velocity ü, increases as 

tj -> -oo (relative to 0) except as | X | or | x, \ -> <*>, where there is a steady similarity 

solution. As ~t, -> -°°, the initial condition for the equation of the upper shear layer is 

given by 

YI = ßI(x„lI) = (-!,)-W2%{1) (3.11) 

The matching conditions to the upper and lower shear layers (regions I and III, 

respectively, in figure 3.1) were given in equations (2.52) and in view of equations 

(3.10b) and (3.10c) become 
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ü,~   _4a as  Y,^ß„ (3.12a) 

a,--^ as ?->0. (3.12b) 

Because the perturbation velocities are very large near the upper and lower shear layers, 

it proves very challenging to devise an effective numerical solution method for 

equations (3.8) and (3.9). 

The pressure gradient appears in equation (3.8a); therefore, to complete the 

formulation it is necessary to find a method to evaluate the streamwise pressure 

gradient impressed by the outer inviscid flow due to the interactive effects. It is evident 

from equations (3.6a) and (3.6b) that the slope of the upper shear layer Y, = ß, is 

0(Relln); consequently, perturbations 0{Re'vn) in the pressure and normal velocity 
lilt "Xl\ 1 • 

are induced in a local interaction region having dimensions 0{Re ) by 0(Re ); this 

is indicated as region IV in figure 3.1. The solution in region IV leads to the pressure- 

displacement relation 

*[ ««-SI *A 

which is derived in Appendix B and involves a Cauchy principal-value integral. As 

indicated in equation (3.13), the growing region II leads to an increase in ß, which in 

turn influences the pressure and hence the flow in region II. The expected outcome of 

this interaction is that the singularity present in the terminal boundary-layer solution 

will be relieved. 

In principle, a numerical solution of the system (3.8) and (3.9) could be initiated 

at some large negative time t!0 using equations (3.10) evaluated at t, = tI0 as initial 

conditions (in terms of the terminal solution). However, it is convenient to scale the 

initial time out of most of the problem formulation through the following 
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transformations: 

xI = (-tl0f
2xl,     Y^i-t^Y,,     t, = (-tI0)t„ (3.14a,b,c) 

ü, = (-t,0)
inu„     Y, = (-tI0)

my/i,     Pi = (-ho)Pi- (3.14d,e,f) 

The momentum equations (3.8) and (3.9) remain unchanged and become 

du,        du,    dy, du,       dp, dy, „1C   M 
-5- + "/3--3—37 = -3-.     "/ = 3F' (3.15a,b) at, dx,     dx, dY,        dx, dY, 

|f = 0. (3.16) 
dY, 

In addition, the boundary conditions (3.12) at the upper and lower shear layers also 

remain unchanged with 

u, 4— as  Y,->ß„ (3.17a) 
(Y,-ß,f 

u,~-\ as  Y,^0, (3.17b) 
Yi 

while the initial condition (3.10), which applies at t, = -l, is simply the terminal 

boundary-layer solution and 

x, = X,   Y=Y 

ufc„Y)=Ü(X,Y)\  at t, = -l. (3.18) 

The starting time tm for the integrations only appears in this formulation in the 
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pressure-displacement relation (3.13) which becomes 

pM '■ 
K ds 

In principle, solutions should be obtained for a range of values tI0 which are large and 

negative; evidently, the slope of the upper shear layer must grow significantly in order 

to overcome the small factor (-fo)-114 so that the pressure;?, becomes sensibly large. 

Equations (3.15) through (3.19) describe the formulation of the first interactive stage in 

terms of conventional Eulerian coordinates. 

3.2.2 Lagrangian Formulation 

Because of the large perturbation velocities indicated in equations (3.17) near 

the top and bottom of region II as well as the fact that a focusing of the solution in the 

streamwise direction is expected, a solution of the system (3.15) through (3.19) does 

not appear to be feasible in the conventional Eulerian formulation. However, as 

discussed in §2.3, a Lagrangian formulation is conducive to these types of flow 

because the streamwise momentum equation does not involve the quantities which 

eventually become singular. In addition, the criterion for the formation of a singularity 

is unambiguous in Lagrangian coordinates. 

In a Lagrangian formulation the fluid particle positions %Y) and their 

corresponding velocity components (u„vj) are evaluated as functions of their initial 

locations (£,77) and time t,\ thus, the dependent variables are 

Xi = xfäi]ji),     Y^YförM),     u, = uföri,$,     v1 = vföri,$,     (3.20a,b,c,d) 

with X; and u, being the principal independent variables in the boundary-layer 
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equations. The left hand side of equation (3.15) is the substantial derivative of the 

streamwise velocity representing streamwise acceleration of the fluid particles; 

therefore, it is a Lagrangian time derivative of the streamwise velocity which itself is a 

Lagrangian derivative in time of the streamwise particle position. Therefore, the 

system (3.15) governing the flow in region II is 

du,       dp,       dx, ,„ „„   , N 
37= -T2'     37= M" (3.21a,b) at,       dx,       at, 

in Lagrangian coordinates. Note that the pressure gradient of a fluid particle in equation 

(3.21a) must be expressed in terms of the instant particle position distribution x, at any 

t as opposed to the initial location I;. The lateral momentum equation (3.16) merely 

indicates that the pressure is only a function of the streamwise particle position and 

time. In Lagrangian coordinates the initial conditions consist of specifying the initial 

particle locations with the initial velocities given from the terminal boundary-layer 

solution in equation (3.18); consequently, 

x, = £  X=ri   , 
}  at t, = -\. (3.22) 

«,= £/(£ 77) 

The matching conditions (3.17) show that the motion must become parallel as the 

bounding shear layers at the edges of region II are approached; thus, in these regions 

Y, = 77 for all t„ and it follows that 

(3.23a) 
4 

as  r7-^/30(d> u' iv-mf 

4 
u,~ — 

V 
as 77 ->0, (3.23b) 
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where ß0(£) = 2 %(X) defines the initial height of the upper shear layer in terms of that 

associated with the terminal solution. 

The solution of the momentum equation (3.21) subject to the initial conditions 

(3.22) and the boundary conditions (3.23) will provide the streamwise particle 

positions x{g,rj,t) and their velocities uf&],$ as functions of initial position and scaled 

time tj. In order to obtain the pressure gradient, which appears in equation (3.21a), the 

pressure must be evaluated using the interaction condition, and this requires a 

knowledge of the location of the upper shear layer ß as a function of (x;,?/). The 

determination of /?/*/,*/) at a given time necessitates a solution of the continuity equation. 

In Lagrangian coordinates the continuity equation states that the Jacobian of the particle 

positions with respect to their initial locations is equal to unity; thus, 

dx, dY    dx, dY 

dt] dq     dg dT] 

Assume that at a given time the streamwise particle positions x{&],fy are known from 

an integration of the momentum equation (3.21). The continuity equation (3.24) is a 

first-order linear equation for the normal positions ¥(g\T],$ of the particles. The solution 

of the continuity equation can be found by integrating along the characteristic curves of 

equation (3.24) defined by 

^    -   dV ; = d£ (3.25) 
- dxjdri    dx/o^ 

from a location where the particle positions are known. Each characteristic is a curve 

of constant xt which when plotted in the (g\rj) plane represents the initial positions of a 

set of fluid particles which at the current time are located along the vertical line 

xt = constant. The current values of Y, for particles which initially, started out 

distributed along the line Y, = r] - ß0(g) at f7 = -1 defines the current height of region II, 

i.e. Y, = ß/Ot/,?/), and permits the evaluation of pressure from the interaction condition 
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(3.19). 

Although the Lagrangian formulation is complete, the large velocities indicated 

by (3.23) at the upper and lower edges of region II give rise to considerable numerical 

difficulties in solving the problem as presently formulated. The large variations in 

velocity (and subsequently particle position) implied by conditions (3.23) near the top 

and bottom of the domain would necessitate very small time steps in a numerical 

solution of the momentum equation (3.21). These potential problems can be alleviated 

by instead calculating the velocity perturbation about the terminal-solution velocity. To 

this end, the streamwise velocity is written in the form 

u£ri$ = Ü&ri) + q(&ri4), (3.26) 

where the perturbation function U, vanishes at t} = -1, viz. 

C//(6*7,f,) = 0  at t, = -l (3.27) 

for all (£,?7).   Then from integration of equation (3.21b), the streamwise particle 

position distribution may be expressed as 

X/£TM) = ($+ 1) V&Ti)+X&ri,$, (3.28) 

where to satisfy the initial condition (3.22) 

X&Ti,tI) = Z at t, = -l. (3.29) 

Substitution of equation (3.26) and (3.28) into the momentum equation (3.21) gives 
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w,    dp,    ax,  ir 

Thus, the momentum equation for the perturbation quantities does not contain the 

terminal-state velocity distribution explicitly, and Ü in equation (3.26) satisfies the 

unbounded velocity conditions (3.23) at the edges of region II, where the perturbation 

function U, is bounded and independent of 77. The initial pressure distribution is 

influenced by the terminal solution but at any stage is a function of x, and t, obtained 

from equation (3.19). Also observe that the initial conditions (3.27) and (3.29) for U, 

and X, are all independent of 77; consequently, this implies that the perturbations U, 

and X, are one-dimensional unsteady distributions, viz. 

U^Ufät,),     X, = X£&,). (3.31a,b) 

Substitution of equation (3.28) into equation (3.24) taking account of equations (3.31) 

shows that the continuity equation becomes 

dÜ    3X, dY 
-1 = 1. (3.32) 
dT7 

It is evident that the interaction affects the computation of the characteristics of equation 

(3.32) through the particle position perturbation X/£?7), while the remaining terms in the 

coefficients are associated with the terminal boundary-layer solution. It is also clear 

that there is symmetry in the constant x, characteristics. Recall that the terminal-state 

velocity U(£rf) is symmetric about the central line Y = Y0(X) that bisects the central 

region, and also that the particle position perturbation Xt does not depend on 77. 

Therefore, the coefficient of the first term in equation (3.32) (which is associated with 

the streamwise component of any step along a characteristic) is anti-symmetric about 

V = A)(£)/2 = %(X) which bisects region n. On the other hand, the second coefficient 
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in equation (3.32) (which is associated with the normal component of any step along a 

characteristic) is symmetric about the central curve. As a result, the characteristics are 

all symmetric about 77 = /70(£)/2 = Y0(X). 

3.2.3 Singularity Conditions 

In conventional Eulerian formulations it is not possible to accurately evaluate 

the flow development as a focusing irregularity starts to occur. On the other hand, 

Lagrangian methods provide a clear criterion for the formation of a singularity. From 

the equations (3.25) of the characteristics associated with the continuity equation (3.24), 

the following expression for the vertical position of a fluid particle initially located at 

(£,77) is obtained 

«§n.ö-?o = * (3.33) 

•/(§).»to> 
^J@KI/^$L + @cI/^1^i, 

where the integral is along the constant x, characteristic passing through the point (£77) 

and originating at O^o) where Yt = YI0. A singularity occurs when a particle at an 

initial position (£77) is eventually located at an infinite normal distance from the 

surface. From equation (3.33) it is evident that this occurs when a stationary point in 

the Xj field develops at some location (^,T]S) at some time ts. The criterion for infinite 

shear layer growth (on the boundary-layer scale) is 

|| = |i=0   at   £=^v = Tls,ti = tir (3.34) 

Therefore, a singularity develops at a point where the coefficients of the continuity 

equation become zero. In the problem under consideration here, the first coefficient of 
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equation (3.32) is zero (for t,>-l) along the central line due to the symmetric form of 

the streamwise terminal-state velocity. Note that this is consistent with the MRS model 

for unsteady separation (see §2.2) which indicates that if a separation singularity forms, 

it must occur somewhere along the zero vorticity line given by duJdYj = 0. If the first 

interactive stage terminates in a singularity, therefore, it must occur when the second 

coefficient in equation (3.32) becomes zero at a point along the central line, 

ri = ß0Q/2, viz. 

(''+1)§+fr° (3-35) 

at some £, where rjs = ß0(%s)/2. Note that this coefficient is equal to one everywhere at 

the start of the integration at t, = - 1. 

3.2.4 Transformation to a Finite Domain 

In order to obtain a numerical solution of the first interactive stage within the 

intermediate zone (region II), it is convenient to transform the region into a finite 

rectangular domain. The streamwise coordinate, which is defined on the range (-00,00), 

can be transformed to the finite range (-1,1) by the transformation 

f = |arctanl|J. (3.36) 

Here, a is a stretching parameter that affects the concentration of points near £, = 0; for 

a uniform mesh in |, a relatively larger number of mesh points is clustered near £=0 

for smaller values of a. The transformation (3.36) maps upstream infinity to |=-1 

and downstream infinity to £= 1 with the domain still centered at £= 0. Similarly, the 

streamwise particle position perturbation can be transformed to the range (-1,1) using 
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#7 = |arctan(§). (3.37) 

The normal coordinate is defined in the range (0,^(§) in region II, and it is convenient 

to apply the scaling 

1  A(ö* 
(3.38) 

so that 77 is defined over the range (0,2). The lower extent of the domain is fj = 0, and 

the upper extent is then 77 = 2, while 77 = 1 corresponds to the central line 

77 = /30(£)/2 = Y0(X) about which the flow is symmetric. 

Application of the transformations (3.36) through (3.38) to the momentum 

equation (3.30) results in the equations 

du,    rQQ fo    a$   roQ 
dt, tit,'      &i 

u, (3.39a,b) 

and the continuity equation (3.32) becomes 

dÜdY, '      „dÜ       a    3% 
(t,+ 1) —+ ~ ~ 

3|    r(2Q 3| 
3^ = flÄ© (3.40) 

In equations (3.39) and (3.40), the function Tis defined by 

r(z)=4[l+cos(7Tz)]. (3.41) 

The initial conditions (3.22) are now 
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2      ^ at h—l, (342) 

and the boundary conditions (3.23), which are necessary in order to match to the shear 

layers above and below region II, are 

u 1    & ±£ =■       as  77 ->2, (3.43a) 

u 

$(D(*7-2> 

i6—^ as  77^0. (3.43b) 1 mw 

The effect of the streamwise transformation (3.36) on the interaction condition (3.19) is 

considered in §3.3.4 where the numerical algorithm for solution of the Cauchy integral 

is described. 

33 Numerical Methods 

3.3.1 General Considerations 

The first interactive stage of unsteady boundary-layer separation in Lagrangian 

coordinates is governed by the inviscid momentum equation (3.39) with the initial 

conditions (3.42), the continuity equation (3.40) and the interaction condition (3.19). 

The boundary conditions (3.43) are inherently satisfied by the initial velocity 

distribution /7(|,?7) from the terminal solution, and thus do not need to be applied 

directly in the numerical solution to the momentum equation for the unsteady one- 

dimensional perturbation f/7(|,f/). The general solution procedure at each time step is as 

follows. The solution of the one-dimensional momentum equation (3.39) provides the 
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velocity perturbation £/,(!,*,) and particle position perturbation X,(f,?,) at each time. The 

distribution X,(%,t,) is necessary, along with the terminal-state velocity #(!,/)), in order 

to solve the continuity equation (3.40) for the normal particle positions ^(|,TU) and the 

upper boundary ßföj,) of region II. The Cauchy integral (3.19) of the equation of the 

upper boundary then gives the pressure distribution Pi(X„ti) which is required for the 

solution of the momentum equation. 

In solutions of the non-interactive boundary-layer equations in Lagrangian 

coordinates, the momentum equation is solved independently of the continuity 

equation; however, in interactive calculations the solutions of the momentum and 

continuity equations are strongly coupled. Integration of the continuity equation (3.40) 

is accomplished on a two-dimensional mesh which must be defined in the £ and f) 

directions. The integration of the momentum equation is carried out on a one- 

dimensional mesh in the <f direction. However, the position of the upper shear layer 

may be calculated from the continuity equation for any desired | location, and in 

principle the one-dimensional mesh for U&,t,), Mit,), pföj,) and ßföj,) may be 

defined independently of the two-dimensional mesh associated with the continuity 

equation. This enables the discretizations to be chosen according to the specific 

requirements of each. In fact, since the pressure gradient must be evaluated at the 

current x, particle positions rather than mesh locations, a different mesh distribution in 

£ could be used for U, and X, than that used for p, and ßh However, this is generally 

not advantageous because these functions are highly interdependent and basically 

require the same degree of resolution. Recall that the terminal solution Ü and the 

characteristics of the continuity equation (lines of constant x,) are symmetric about the 

central line fj = 1. Therefore, the two-dimensional mesh associated with the continuity 

equation need only be defined over the lower half of the domain, i.e. for -1 < f < 1 

and 0 < fj < 1. Subdividing each of the | and f\ intervals into a total of I0 - 1 and J0 - 1 

equal subintervals, respectively, the mesh locations (|,,77;) were defined for / = l,...,/0 

and j=l,...,J0. The streamwise interval for the one-dimensional functions U^t,), 

MhJi), Pi(Xht,) and ßfäj,) was subdivided into a total of K0 - 1 equal subintervals 
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with the mesh locations |t where k = l,...,K0. While different values of /„ and K0 

were tried, it was found that the choice I0 = KQ was most appropriate as it provides the 

same resolution for the one- and two-dimensional meshes. In the following 

development, known quantities from the previous time step are denoted by an asterisk. 

3.3.2 Momentum Equation 

In order to integrate the in viscid momentum equation (3.39) forward in time, 

the pressure gradient from the previous time step, denoted by (dp,/dX,\, was assumed 

known. Time was advanced in steps of At, so that t, = t, + At,. The first-order 

equations (3.39a,b) for U, and X, were then solved using a predictor-corrector 

algorithm. The values of U,(^,t,) and X,(%k,t,) at the current time step were estimated 

using the following difference formulae (which are first-order accurate in At,) 

Uipith) = !],{?;/,)- r[UlM ßp,X 
a MM- (3.44a) 

Ui,h) = Utkti + F[Xf^ U,p(lk,t,) At,, (3.44b) 

for k = l,...,K0. With these estimates for U,p(^k,t,) and XIp(%k,t,), the pressure gradient 

(dp,/dX,)pk was estimated at the current time step using an algorithm that will 

subsequently be described. The distributions of U,(%k,t,) and X,(%k,t,) at the current time 

step were refined using the following second-order accurate formulae 

W&d = u&&-r[^l)] 

Upk 
At,, (3.45a) 

*/(&>'/) = m/<) + r^f^ [U,p&,t,) + U,(lk,t,)] At,, (3.45b) 
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for k = l,...,K0. Observe that in equations (3.44a) and (3.45a), the pressure gradient 

must be evaluated at the current particle position location X, as opposed to the initial 

location |. Therefore, to determine (dpJdX,),, the pressure gradient with respect to the 

initial location |, i.e. @#/d£)t with k=l,...,K0, was evaluated using central 

differences at mesh locations 1 = 1,(4,?,). In order to advance the solution of the 

momentum equation to the next time step (also from the predictor to the corrector), the 

pressure distribution must be determined at the current time. This is accomplished 

through a calculation along the characteristics of the continuity equation to obtain the 

current equation of the upper shear layer ß,(%k,t,) which is used in the interaction 

condition defining the pressure distribution. These two steps are discussed in the next 

two sections. 

3.3.3 Equation of the Upper Shear Layer 

Inspection of the continuity equation (3.40) reveals that the effect of interaction 

is represented by the particle position perturbation £,(!,*,), while the remainder of the 

terms represent the continuation in time of the terminal solution. In order to evaluate 

the coefficients of the continuity equation, the terminal-state velocity distribution 

Ü(g,fj) must be known, as well as the initial displacement thickness /?0(|) = 270(|). 

Determination of A,(f) from equation (2.44) requires the evaluation of complete elliptic 

integrals, while the calculation of equation (2.46) with (2.42), (2.43) and (2.45) for the 

terminal-state velocity #(!,/)) involves evaluation of incomplete elliptic integrals. The 

necessary elliptic integrals were evaluated using the descending Landen transformation 

described in Abramowitz and Stegun (1964). To compute the terminal-state velocity 

distribution £/(|,>?7,) on the mesh, an implicit procedure was required. For a given 

point in the mesh (J,fy), the central line velocity f70(|) was determined using equation 

(2.41), and X and m were obtained from equations (2.43) and (2.45). For a specified 

value of f = 77 in equation (2.46) the value of 9 was found using a root finding 

technique such that equation (2.46) was satisfied; tf(|,-,fy)  was subsequently 
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determined from equation (2.42). In this manner Ü&fjj) was evaluated on a two- 

dimensional mesh defined for i = l,...J0,j = l,...,J0. 

A knowledge of the terminal-state velocity and the particle position perturbation 

permits an integration of the continuity equation at any given t,. Recall that the 

continuity equation in Lagrangian coordinates is a first-order linear equation which is of 

the form 

P(lU) j£ + Q(ln,h) ^ = R(&f),t,)- (3.46a) 

In the present case (see equation 3.40), the coefficients are 

P(lfl,t,) = -(t,+ l)^, (3.46b) 

a4flA)oft+1)aj+_£_||. (3.46c) 

Ä(&7,f/) = f^|. (3.46d) 

Observe that the coefficient R = R(%) and the derivatives of U (the terminal-state 

velocity) in equations (3.46b) and (3.46c) do not change with time and were evaluated 

once and for all using central differences prior to an unsteady calculation. The second 

term in equation (3.46c) is a function of f only and reflects the effects of the unsteady 

interaction. The coefficients in equations (3.46b,c,d) were computed at each time step 

for each point in the two-dimensional mesh according to 
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P(LVjJi) = -(!i + l) (3.47a) 

ß(|»V^ = ^+1) (30)   ,        a       (dX,y 

Ulli   r[%&tt)] U|J 
(3.47b) 

(3.47c) 

for/=l,.../o,7 = l,-,4 
The solution to the continuity equation (3.46a) is obtained by integration along 

characteristics which are curves of constant x,. The equations of these characteristics 

are 

d|_M_dj/-dv 
P ~ Q ~ R _as' (3.48) 

where s is a variable along a characteristic. The integration can be carried out along the 

characteristics in order to determine the normal position Yl(g,fj,t,) of any fluid particle; 

however, the equation of the upper shear layer, which is given by ßi(g,ti) = Yi{g,2,t,), is 

of particular interest. In a typical boundary-layer calculation (see, for example, Peridier 

et al, 1991a), integration along the characteristics is initiated at the surface where x = £ 

and y = 0 for all time; that is, in view of the no-slip condition, particles which are 

initially on the wall must remain there. In the present problem, however, the 

integration cannot be initiated at f) - 0 because of the unbounded streamwise velocity 

condition (3.43b) as the lower shear layer is approached for f\ -> 0. Therefore, 

integration along the characteristics must begin at a more convenient location. To this 

end, consider integration of the last of equations (3.48) (dY, = R(£,) ds) along a 

characteristic. Since the right side is independent of Yh it is not necessary to know the 

value of Yi at s = 0, and integration of the equation may begin anywhere and, in effect, 
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Figure 3.2 - Schematic of characteristic integration. 

produces the change in Y, between any two points. In the present method, the 

integrations were initiated at the point where each characteristic intersects the central line 

77 = 1. In addition, recall from the matching conditions (3.43) at the top and bottom of 

the domain that the flow becomes steady and parallel at the shear layers which bound 

region II, i.e. u = «(77), as fj -> 0 and 77 -> 2. In this study integrations were carried 

out along the characteristics from the central line (77 = 1) downward toward the parallel 

flow layer that develops as 77->0. The path of this integration is illustrated 

schematically in figure 3.2. In order to compute the displacement thickness at some 

point *, = &, which in the finite domain is 4 as may be calculated from equation 
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(3.36), it is necessary to determine where a fluid particle, which at time tt is located at 

xt = £., started out at time t, = -l. Denote this initial position by 4 or in the finite 

domain as 4- For the illustrative situation shown in figure 3.2, the fluid particle now at 

xI = %e, or equivalently from equation (3.36) at 

i/ = |arctan[^j = ^c, (3.49) 

is assumed to have experienced a drift to the right along the central line in the time 

interval from tt = -1 to tr Thus, from equation (3.28) with the transformation (3.37), 

the point 4 is determined from the relation 

*,(4,U) = (t, + 1) [7(4,1) + a tang Mo,t,)] = 4- (3.50) 

For a given 4 at time t,, the appropriate value of 4 can by evaluated iteratively using 

second-order accurate interpolation formulae. Therefore, the initial conditions for 
integration along a characteristic are 

1 = 4,   fl = h  F/ = 0 at s = 0. (3.51) 

The characteristics have the general shape indicated in figure 3.2 and bend to the left as 

they approach the lower shear layer. Because of the high velocities near the lower shear 

layer, all characteristics emanate from the lower left corner at | = -1 and f) =0. 

Similarly, all characteristics in the upper portion of the shear layer bend to the left above 

f) = 1 and end up in the upper left corner at I = -1 and f) = 2. 

Integration of the characteristic equation (3.48) was carried out in the (£/)) 

plane using a predictor-corrector algorithm to step along the characteristics. Assume 

that the integration along the characteristic has reached the nth point denoted by (£',fj") 

and Y, = Y"; the coordinates of the next point (f+1,7f+1), where Yt = Y/'+\ are to be 

evaluated next.  First, the coefficients F, ß" and R" of the continuity equation in 
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equations (3.47) at the nth point must be computed. This was accomplished using 

bilinear interpolation between the four mesh points surrounding the point (<f ,f)") (see 

Abramowitz and Stegun, 1964). The next step along the characteristic was evaluated 

from the following relation 

As=   .      . . (3.52) 
vW+tQ") 

where 0 < 6 < 1 and a typical value of 6 used was 6 = 0.25. This formula restricts the 

step along the characteristic so that the arc length involved is some fraction of the mesh 

spacing A?; this gives rise to very small steps in s near f) = 0 where the coefficients 

P and Q become large. The location and normal distance of the (n+1) point were 

then predicted using 

ff^-Pte, (3.53a) 

C = f-ß"As, (3.53b) 

Y,";1 = ¥," + !? As, (3.53c) 

where the negative signs in (3.53a,b) appear because the integration was carried out 

backward along the characteristic starting from the central line f\ = 1 and moving 

toward the bottom shear layer at f\ = 0. The coefficients P"+\ ß"+! and R"+i were then 

evaluated at the point (<^l,f)™1) through interpolation, and the corrector algorithm was 

implemented using 
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?+1 = ?;'-±(Pn + F+l)As, (3.54a) 

trl = tLH-\lff + Tl)te, (3.54b) 

Yrl = Y," + ± (F" + FT1) As. (3.54c) 

Each integration proceeds along the characteristic successively in this way until the 

vicinity of the parallel flow layer is reached as ?? —> 0 - The level at which the 

characteristic integration is terminated must be carefully chosen; it must be near enough 

to 77 = 0 so that the flow is essentially plane parallel but still sufficiently large so that 

substantial computational errors do not arise from attempting to integrate too far 

through this high velocity region where as illustrated in figure 3.2, the characteristics 

continue far upstream gradually asymptoting to f\ = 0. A typical value of r\e used in 

the present integrations was r]e = 0.7. Once the parallel flow region is reached, the 

contribution to the normal distance Y, from the remainder of the characteristic is 

simply the initial normal coordinate r\e of the point since Y, = r\e for locations in the 

parallel flow layer. Then because region II is symmetric about the central line, the 

current distance of the upper shear layer from the wall at x; = £. is given by 

ßI(Lt1) = 2(YIe + ile). (3.55) 

Here, Yu is the value of Yt obtained in the integration along the characteristic from f\ = 1 

to f\ = f\e. The characteristic integration was executed for each point along the mesh 

|=4, where k = l,...,K0, to obtain the equation of the upper shear layer at the current 

time. 

As a check on this method of characteristic integration, the interpolation 

required at each point {^,ff) along a characteristic was replaced by a semi-analytical 

determination of the parts of the coefficients P" and Q" which are based on the terminal 
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solution (see equations (3.46b,c)). These terms require the gradients of the streamwise 

velocity Ü from the terminal solution with respect to c and 77. The term dÜ/dfj was 

evaluated using equation (2.38a) where Ü(^,fj") was determined directly from the 

terminal solution (equations (2.41)-(2.46)) rather than from interpolation between grid 
rn ft 

points. An analytical expression for dU/dg is difficult to obtain, but the derivative can 

be determined using a central-difference approximation if Ü is found (from the 

terminal solution) for points (%"-A$,fjn) and (£," + A£,T)") for a small Ac. This 

method requires many evaluations of the streamwise velocity Ü at each time step using 

the implicit procedure described at the beginning of §3.3.3 and is, therefore, very time 

consuming. Although it was found to be more accurate, this procedure yields the same 

results described in §3.4. 

3.3.4 Interaction Condition 

A central feature of the first interactive stage is the interaction condition (3.19) 

which relates the pressure to the growing distance of the upper shear layer from the 

wall. Equation (3.19) is a Cauchy principal-value integral, and an accurate numerical 

method to evaluate this integral is critical to the success of the overall scheme. In many 

previous interacting boundary-layer studies (see, for example, Henkes and Veldman, 

1987 and Riley and Vasantha, 1989) first-order accurate methods in Af have been 

used to compute the Cauchy integral; this may be one reason for the contradictory 

results obtained in some of these investigations. Peridier et al. (1991b) describe a 

second-order accurate scheme for computing Cauchy integrals on a uniform mesh. 

Here, this algorithm is extended to include the possibility of a nonuniform mesh. 

Consider a general Cauchy integral 

C(x) = ^^^ds, (3.56) 

and assume that the asymptotic behavior of F(x) is known for |x|—>°°.    The 
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interaction condition is calculated at fixed t,, and thus the time dependence will be 

omitted in the following analysis; in addition, the subscript I will be omitted from x 

through the remainder of this section. In the present study (cf. equation (3.19)), 

F(x) = -(-tI0r
UI4^, (3.57) 

where ß^x) is the normal distance of the upper shear layer at the current time. The 

calculation of the integral (3.56) is considered here for a typical point x« in the mesh. 

The integral is divided into two parts 

C(xm) = S(Xm) + L(xml (3.58a) 

where the main part of the integral is 

Sm = S(xJ = if_R{^-sds, (3.58b) 

and R is some large fixed value of x. The contribution from the asymptotic tails is 

^«4{r^f^4     a58c) 

As with the rest of the formulation of the first interactive stage, a finite-domain 

transformation similar to equation (3.36) is defined so that s and x are defined in the 

range (-1,1). This interval is divided into M segments that are not necessarily of equal 

length except for the last interval on each end which both have the same length with 

A*! = AxM. The mesh structure is illustrated in figure 3.3. The constant R is chosen so 

that the asymptotic tails are taken over the last half intervals in the finite-domain mesh; 

therefore, 
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-R 

k— Asymptotic Tail 

Axr . Ax\   Ax3 ■ A*m-l| AX,„ 

+R 

Asymptotic Tail—>j 

Mf-ii Ax, M 

+. *. 
Xi        X2 Xi x* Xm-1 xm Xm+i xM-l XM xM+l 

x = -l x=l 

JC = -°° X=oo 

Figure 3.3 - Mesh definitions for Cauchy integral algorithm. 

i? = atan{|(l-±Me)j, (3.59) 

where AJce = AxY = AxM. 

First, the main part (3.58b) of the  Cauchy  integral  will  be  considered. 

Applying the transformation (3.36) to s and x, equation (3.58b) becomes 

1 (ftXm\ His) 
_Rsirq{xm-s)] 

ds, (3.60a) 

where 

H(x) = 
F(Jc) 2(-tI0) 

■11/4 

<¥) CO 
%a 

Jnx^ßß) 
dx 

(3.60b) 

The integral (3.60a) is divided into integrals around each mesh point and summed 
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LM= 

Sm = S(xJ = ±co{^)ti 
H(s) 

*n- 
Ax__ sin[^(xm-^)] 

ds, (3.61) 

where each integral is from the midpoint between xnA and xn to the midpoint between x„ 

and x„+l. Expanding the function H(x) in a Taylor series about x„ gives 

H(x) = H(x„) + (x-x„)^ + -=H„ + (x-xn)Hn + -, (3.62) 

where the prime denotes differentiation with respect to x. Substituting this expansion 

into the integral, equation (3.61) can be approximated as 

Sm = S(xJ = ±co{^)fl2{AmnH„ + Bnm H'„}, (3.63) 

where 

-     Ax, 

Ann: ds 
A*„-I sin[| (4-■?)]' 

(3.64) 

Bm„ = 
s-x„ 

^^singÄ^)] 
ds. (3.65) 

The integral (3.64) for Amn may be evaluated in closed form to give 
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A   - _ 11   /sin^ + flJ-sinM2 (3 66) 

where 

r„ = f «.-#, (3.67a) 

a„ = f (Ax^-Ax,,), (3.67b) 

&n = |(Ax„_1+M„). (3.67c) 

The integral (3.65) for 5«« cannot be evaluated in a convenient closed form; instead, let 

fi-^, (3.68) 

so that the integral (3.65) becomes 

Bwm = (^lf 2AV' -r^-T. (3-69) 
_i/2     sm(rm„-e//) 

where £ = % M^/2. The denominator of the integrand in (3.69) can be rewritten and 

approximated for small e as 

sin(rm -£H) = sin rmn - £ cos rmn ß + 0{£2). (3.70) 

Substitution of the expansion (3.70) into (3.69) produces integrals which can be 

evaluated in closed form to give 
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Bm„ = - £cosrm 

+ sinr. 2 sin rm„ - £ (AxJAx^) cos rm 
e cos rm 

log 2 sin rm„ + £ cos rm 
(3.71a) 

When rmn is large, this expression may be simplified by rewriting the logarithmic term 

and expanding to obtain 

D       _ (AVi)  if Ax; 
m"    Ssinr^U^-i 

.0    A2 
1+£COS^j, 

3 sin rm„ 

S   A3 Ax,, 
.lAx«.! 

+ 1 (3.71b) 

In practice, equation (3.71a) was found to be most effective for | r„J < 0.6 and equation 

(3.7lb) for | rmn\ > 0.6 . If the mesh is uniform, i.e. Ax„^ = Ax„ = Ax , the expressions 

(3.66) and (3.71) reduce to 

4.n = -ilog{ w 
sin rmn + sin *(W 

(3.72a) 

3n» = ' 

(M)2 

£cosrmBV~r£cosr™ 
J + . SU1 rm« log 

2 sin/-„„-£ cos rm, 
2 sin rm„ + £ cos r„, 

£<A«? 
3 cosrm 

,   k™l<0.6 

|rj>0.6 
(3.72b) 

which are the same as those obtained by Peridier et al. (1991b). 

It is evident from the form of the dependence on rmn in equations (3.72) that the 

matrices of coefficients Am„ and Bmn are such that each element along a diagonal 

contains the same value if the mesh is uniform. Therefore, only (2M-1) values must 

be stored for each of Amn and Bm„ rather than M2 values as for the nonuniform mesh 

case. For either the uniform or nonuniform case, if the mesh does not change with 
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time, the coefficients A™ and Bm„ must only be calculated once, whereas they must be 

calculated at every time step if the mesh changes with time as in a time dependent 

adaptive meshing scheme. Therefore, use of a time dependent mesh involves a 

considerable increase in computational time. One such scheme was tried in the present 

investigation in which the displacement thickness at a given time was computed at the 

current streamwise locations of a predefined set of fluid particles along the central line. 

In this way, the resolution was enhanced in regions where the flow focused into a 

narrow streamwise region. While this method did provide some increase in resolution 

as the flow evolved toward an eruption, the increase in accuracy was not sufficient to 

warrant the substantial increase in computational time. As a result, a uniform mesh 

without time dependence was used for the majority of the calculations. 

Now, consider the contribution of the asymptotic tails to the Cauchy integral. 

In order to evaluate the integrals in equation (3.58c) for \x\ -> °° , the form of dßj/dx 

must be determined for large \x\. Substitution of (2.43), (2.45) and (2.47) into (2.44) 

give the following expressions for the displacement thickness at large x: 

f 4 m X —> °° 
01/4    1/6   ' 

ß'~{ r^ • (3-73) 
4 

x _>_oo 

where K is the complete elliptic integral. Taking the derivative of (3.73) with respect 

to x and substituting into (3.57) and (3.58c), the contribution due to the asymptotic 

tails is 

■■L(xJ = ^^-{K{M     ,   _x7™    „x-*Hf)|   7^77^-        (3-74) 

The integrals in equation (3.74) can be evaluated separately for xm * 0, where the 
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Substitution s = xji? is helpful, and xm = 0. The resulting expressions are 

( ,     .   v-ll/4 
1    H/o) 

Lm = { 

-f3l/4^i?7/6{^)+4if)}' xm = 0 

(3.75a) 

where 

UxJ = -T^xJ,   xm>0 
T2(xm),     xm < 0' (3.75b)' 

T+(xm) ■■ 
_JT2(xm),     xm>0 

-T^xJ,    Xm<0' 
(3.75c) 

and 

TM = 24 r- V3 log{^^|^j}'- 8 an"' y-4 an'^},        (3.75d) 

where 7= 
1/6 

3.4 Calculated Results 

Before discussing the numerical solution of the full interactive case, the 

problem without the influence of interaction will be considered in order to test the 

algorithm described in the last section. In this calculation the pressure is not evaluated 

from equation (3.19), and the pressure gradient is set equal to zero in equation (3.30a). 
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Without the pressure gradient term, the solution, starting at some value t, = tI0, should 

consist of the continuation of the terminal solution which ultimately must become 

singular at tt = 0. Because the terminal solution is exact and known, the ability of the 

numerical algorithm to continue to track the solution all the way to the singularity gives 

confidence in the numerical method. For example, the variables defined in the first 

interactive stage given in equations (3.6a,b,c) and in equations (3.14a,b,c) are related to 

the terminal-state variables in equations (2.37a,b,c) by 

X = (-t,fl2xI, (3.76a) 

ßfa,t,) = (-t,TMßo0£). (3.76b) 

Equations (3.76) may be used to obtain an exact result for the equation of the upper 

shear layer for any streamwise location xt and time t, which then can be compared 

directly with the results of the numerical integration. Note that in equation (3.76b), 

ß0(X) = 2Y0(X) is the initial displacement thickness given by the terminal solution. 

Calculations were carried out using the algorithm described in §3.3 using 401 points in 

the E, direction. Since the pressure gradient is taken equal to zero in equation (3.30a), a 

value of tI0 need not be prescribed (since this only appears in equation (3.19)), and both 

the perturbations U, and X, in equations (3.30) remain unchanged for all t,. Because 

of this behavior, all reasonable values of the time step will produce the same result, and 

basically the integration procedure corresponds to starting a calculation at some 

arbitrary location in time just prior to the formation of the singularity. The central 

question to be answered here is how well the numerical integration scheme for the 

continuity equation performs in producing distributions of ßi(xj,tj) given exactly by 

equations (3.76). The displacement thickness from such a calculation at several times 

is shown in figure 3.4. The initial condition at t,=-l is the terminal solution; 

subsequently, the spike in displacement thickness narrows in the streamwise direction 

and expands away from the surface according to the scalings in (3.76) before becoming 
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Figure 3.4 - Equation of the upper shear layer ß, for non-interactive case. 
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Singular at tt = 0. It may be noted that the integration scheme for the continuity 

equation reproduces the developing terminal solution very closely, and the computed 

and exact results are indistinguishable graphically. These calculations give confidence 

in the algorithm for integration of the continuity equation, and it is now possible to turn 

attention to the first interactive stage. 

For the first interactive stage, the interest is on how the evolving terminal 

boundary-layer solution is altered by the influence of interaction. In order to obtain a 

numerical solution of the first interactive stage, the time at which the calculation is 

initiated tI0 and the time step At, must be chosen. Many calculations were carried out 

with different values of both of these parameters, and it was found that t,0 = -50 was 

sufficient to capture the bulk of the interaction, and the solution did not change for time 

steps smaller that At, = 0.001. All results shown were obtained using these values, and 

the effect of changes in these parameters on the numerical solution will be discussed 

further as the solution is described. 

Based on the interactive boundary-layer calculations of Peridier et al. (1991b), 

it was expected in the initial stages of the investigation that the first interactive stage 

would terminate in a singularity at a time prior to that which occurs in the non- 

interactive case {i.e. the terminal solution). Indeed, for the mesh sizes used in the 

initial stages of the investigation, the singularity (as described in §3.2.3) always 

occurred at negative times {i.e. t,s <0). In these cases the form of the singularity was 

essentially similar to the terminal singularity that occurs without interaction as shown in 

figure 3.4 except that it occurred at an earlier time. For example, the singularity times 

for a few different meshes are given in table 3.1. These results appeared encouraging 

since the singularity time found by Peridier et al. (1991b) was approximately 

t,s = -3.0 (the exact value varied slightly with Reynolds number). As seen in table 3.1, 

however, it proved impossible to obtain a grid independent solution; as finer meshes 

were used, the singularity occurred at progressively earlier times. 

As the mesh was refined further, an irregularity appeared in the solution, and 
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Mesh t,s hs 

I0=K0 = 101, 70 = 51,  a =1.0 -0.019 - 0.950 

70 = tf0 = 201,  Jo = 101,  a = 1.0 - 0.048 - 2.400 

70 = Z0=401,  70 = 201,  a =1.0 -0.081 - 4.050 

Table 3.1 - Singularity times from calculations of the first interactive stage 
for various meshes. 

results for a typical case are shown in figure 3.5 which were obtained using a mesh 

defined by 70 = K^ = 801,70 = 401 and a = 1.0. Before discussing the nature of the 

irregularity, some general features of the solution will be discussed. The effective 

displacement ß,_ shown in figure 3.5a, evolves essentially as in the non-interactive 

case; the effect of the interaction is small globally. The pressure p, induced by the 

growing displacement thickness is shown in figure 3.5b. Note that the magnitude is 

small due to the factor (-tI0Y
im in the interaction condition (3.19). Figures 3.5c and 

3.5d show the streamwise velocity perturbation and particle position perturbation, 

respectively. It is these perturbation variables which most clearly reveal the overall 

effects of the interaction. Recall from the description of the terminal solution (about 

which the flow is perturbed) that the streamwise velocity becomes progressively larger 

as the upper and lower extents of the region, as well as the upstream and downstream 

extents, are approached. Therefore, the one-dimensional velocity perturbation, which is 

small in magnitude, only alters the flow appreciably in the immediate vicinity of the 

center of the domain, near the point (|,T)) = (0,1), where the terminal-state velocity is 

small. Recall also that the velocity along the central line is positive upstream of 

(1,^7) = (0,1)   and negative downstream  of this point.   With this   in   mind,   the 
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(a) Equation of the upper shear layer ßh 

Figure 3.5 - Interactive calculation with a = 1.0. 
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(x 104) 
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(b) Induced pressure p,. 

Figure 3.5 - Continued. 
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(c) Streamwise velocity perturbation Uh 

Figure 3.5 - Continued. 
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(d) Particle position perturbation Z7 -1. 

Figure 3.5 - Continued. 
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perturbation velocity (figure 3.5c) reveals an increasing positive perturbation just 

upstream of £= 0 and a negative perturbation just downstream of this point. Thus, the 

interaction accelerates the focusing of the flow toward the eventual separation point; this 

suggests that the onset of the singularity would likewise be accelerated as was found in 

the coarse mesh results described above. 

The irregularity exhibited in the latter stages of the case shown in figure 3.5 is in 

the form of a short length scale spike centered at t~ 0 which forms in the induced 

pressure, velocity perturbation and particle position perturbation distributions. The 

effect of concentrating more points near £ = 0, by reducing the value of the streamwise 

stretching parameter a in the finite-domain transformation, is shown in figure 3.6. 

These results were obtained on the same mesh used to obtain the results shown in 

figure 3.5 except for the value of a; figure 3.6a shows results for a = 0.5, and figure 

3.6b shows results for a = 0.25. Note that halving a approximately doubles the 

number of points in the vicinity of £ = 0. Comparing the results for the induced 

pressure in figure 3.6a,b with the case shown in figure 3.5b, it becomes apparent that as 

more points are concentrated near E, = 0, an instability is present which is manifest at 

earlier times for finer meshes. This type of behavior is reminiscent of the short 

wavelength instability found by Ryzhov and Smith (1984) in considering dynamic stall 

and by Tutty and Cowley (1986) for triple-deck type interactions. Such an instability 

does not permit grid independent solutions, because smaller step sizes in the mesh 

admit shorter wavelength, faster growing modes. This also accounts for the occurrence 

of the instability near £ = 0 where the step sizes are smallest due to the transformation 

(3.36). The presence of an instability in the first interactive stage is considered further 

in §3.5. 

The effects of the other solution parameters support the physical existence of a 

high-frequency instability in the first interactive stage. Increasing the number of points 

in the streamwise mesh Ko has the same effect as reducing the stretching parameter; 

the smaller step sizes promote faster growth of the instability. In addition, the choice of 
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(a) a = 0.5. 

Figure 3.6 - Induced pressure/?/ from interactive calculations. 
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(b) a = 0.25. 

Figure 3.6 - Continued. 
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an initial start time affects the spacial resolution. Choosing the initial time fo at which 

to start the interactive calculation involves a compromise between capturing the 

interaction and mesh resolution. In order to capture the bulk of the interaction, the 

magnitude of tI0 should be large; however, the transformation (3.14) indicates that 

increasing the magnitude of tI0 reduces the resolution of the physical mesh in the 

streamwise direction. It was possible to alleviate this difficulty through a remeshing 

procedure in which a calculation was performed successively over a series of time 

intervals with the results of the previous interval (scaled according to equations (3.14)) 

being the initial conditions for the next interval with smaller lf/0l. Although this 

procedure captured more of the interaction, the effect on the instability was not 

noticeable, apparently because the instability is so highly mesh dependent. Of 

particular interest in numerical computations exhibiting instabilities is the effect of the 

time step A*>. Interestingly, reductions in the time step produced results which were 

indistinguishable from those shown here even after the instability was well developed. 

From a numerical point of view, this is perhaps the strongest evidence that the 

instability encountered here is physically contained in the formulation of the first 

interactive stage. However, a physical instability can only be distinguished from a 

numerical one through experimental or analytical means. Therefore, an analytical 

investigation of the instability is considered in the next section. 

But first, it is of interest to consider the effect of suppressing the instability, 

whether numerical or physical, through a smoothing technique. This has routinely 

been done in calculations of vortex sheet motion (see, for example, Krasny, 1986 and 

Shelley, 1992) where numerical round-off error can have a catastrophic effect on the 

results; the smoothing was accomplished in these studies by application of a Fourier 

filter. After calculation of the discreet Fourier transform of the function, the Fourier 

coefficients with magnitude smaller than a prescribed value, which was set near the 

level of round-off of the computer, were set equal to zero. Alternatively, smoothing 

may be accomplished through convolution of the data function with a prescribed 
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response function (see, for example, Press et al. (1989)). This technique smooths out 

features in the data function which are smaller than the length scale of the response 

function. This was done here by convolution of the pressure distribution at each time 

step with the response function 

r(& = ber*?, (3.77) 

where the constant b was chosen in order to preserve the original scale of the data 

function, and d determined the length scale of the response function. Reducing d 

increased the degree of smoothing, and solutions were sought which were independent 

of d. The convolution was carried out by (1) taking the fast Fourier transforms of the 

pressure distribution and response function, (2) multiplying the corresponding Fourier 

coefficients of these two function together and (3) computing the inverse transform of 

the resulting function. 

An example of the effect of smoothing, with d = 200.0, on the pressure 

distribution is shown in figure 3.7. The mesh used for this case was 

I0 = K0 = 1024,70 = 512 and a = 0.25. Although the number of grid points has been 

increased compared with the case shown in figure 3.6b (the convolution algorithm 

required 2" grid points), the instability is much less severe and the solution breaks 

down at a much later time. By decreasing d further, the instability is gradually 

suppressed until eventually there is no evidence of the instability for values less than 

about d = 25.0. The solution for cases in which the instability is completely suppressed 

then evolve toward a singularity, similar to the non-interactive case, as determined by 

§3.2.3 just as for the early coarse mesh results. However, it was not possible to 

determine a solution independent of the level of smoothing as specified by d, but the 

singularity always occurred at times prior to the non-interactive singularity (t,s < 0); this 

is consistent with the interacting boundary-layer results of Peridier et al. (1991b) and 

the coarse mesh results described previously. While the effect of suppressing the 

instability through smoothing is interesting as it relates to a hypothetically disturbance 

free flow environment, the question remains as to the physical existence of the 

instability within the formulation of the first interactive stage; this is considered next. 
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Figure 3.7 - Interactive calculation with smoothing: d - 200. 
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3.5 Stability Analysis 

3.5.1 Linear Stability 

The numerical results described in the previous section suggest the presence of 

a high-frequency instability within the first interactive stage. In order to investigate 

such a possibility, infinitesimal harmonic disturbances of amplitude £« 1 

areintroduced, and the linear stability of the developing exact solution in the first 

interactive stage (denoted by subscript zero) is considered (see a similar analysis given 

by Tutty and Cowley, 1986). Therefore, define 

ut = uoix^t,) + £ e««*/-ac'/> UifaM + •••, (3.78a) 

Wi = VobM + e e*"'-ac"> ¥i(xI,Y„tl)+ -, (3.78b) 

p, = p0(V/) + e ^ax'-ae") AM) + -, (3.78c) 

ßi = ßoM + £ e«a*'-a^ ß1(x„tI) + ».. (3.78d) 

The wavenumber a is real and is assumed large {a » 1) in accordance with the 

numerical results of the previous section, and c = cr + i c{ is the complex wavespeed. 

Consequently, the temporal stability of the first interactive stage is of interest here, and 

a disturbance is unstable if q>0. Substituting the expressions (3.78) into the 

momentum equation (3.15a,b) and retaining the O(ea) terms (O(ea) > 0(e)), 

the following equations are obtained 

(u0-c)ul-yrl^~=-pl,   "i=-jjjT- (3.79a,b) 
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Note that because a is large, equations (3.79) are the same as would be obtained if the 

flow were plane parallel and w0> "i> Vo and y^ were function of F7 and ß0, ßup0 

and/?! were constants. Substitution of (3.79b) into (3.79a) gives the first-order linear 

equation 

dyx    du0/dY, 
¥i=- 

Pi 
dYf      UQ-C U0-C 

(3.80) 

which has the integrating factor («0 - c) \ Thus, the solution to (3.80) is 

rYi 

¥i=-Pi ("o - c) 
dY, 

(«o - c) 
2' (3.81) 

0     V"0 

where an arbitrary function of (xrf,) must be zero to satisfy y/x = 0 at Y{ = 0. Thus, the 

perturbation velocity from differentiation of equation (3.81) is 

3y/"i duQ 

rY, 
dY, Pi 

(u0 -c)     u0-c 
(3.82) 

Substitution of the expansions (3.78a) and (3.78d) into the matching condition (3.17a) 

requires that for £ « 1 

8 A 
W-ßo? 

as  ?-»#). (3.83) 

Evaluating the solution (3.82) as Y, -> ß0, where the form of du0ldYl is determined as 

Y, —> ß0 from the matching condition (3.17a), and substituting equation (3.83) gives 

Pih = ßu (3.84a) 
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where 

/,= 
c\Y 1 2. (3.84b) 

o    ("o - c) 

Now considering the interaction condition (3.19), substitution of equations (3.78c) and 

(3.78d) gives 

«..^.iS^fAM^a,. (3.85) 

Letting w = s-x,, equation (3.85) becomes 

i.yr^^;"j,, (3.86) 

and the integral may be evaluated using contour integration and is equal to Ttiß^t,). 

Hence, the interaction condition requires that 

A=-M/0r
11/4«A- (3-87) 

Substituting this expression into equation (3.84a) gives the eigenvalue relation 

(-tl0y
w4alc = -l, (3.88) 

where Ic is defined by equation (3.84b). Because a» 1 and is real, L must also be 

real but small and negative. In the present case u0(Y,) is symmetric about Y^ßo/2; 

thus, applying the transformation Yi = 2Y,/ß0 as before, the integral (3.84b) may be 

written 
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/c = A ^-2, (3.89) 
("o - c) 

where again c is complex, u0(xi,Yhti) is a typical velocity profile and ß0(xht,) is the 

displacement thickness at the xt location at which the velocity profile is considered. 

3.5.2 Large c Instability 

In order to determine if the flow is unstable, a solution is sought for the integral 

(3.89) using typical velocity profiles from a calculation of the first interactive stage to 

determine if there are values of the complex wavespeed c, with q > 0, for which Ic is 

small, real and negative. Because the integration range in equation (3.89) is finite, this 

suggests the following expansion 

/c = ^ + -,     |c|»l, (3.90) 

and thus for large c, the eigenvalue relation (3.88) gives 

c,=M,0r
1I/8(/W/2, (3.9D 

and the flow would be highly unstable. Therefore, the growth rate for this case would 

be 

ü = aCi = (-tI0r
im(ß0aT, (3-92) 

which, apart from the constant (-tIQ)'
im, is the same as the linear stability case of 

Brown, Cheng and Smith (1988) (see their equation 2.8). This case would dominate 

any unstable points having c = 0(1), if they exist, due to its faster growth rate. It must 
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be determined, however, whether the large «0 behavior as Y, -> 0 effects the result 

(3.90) and thus the existence of the large c instability. 

In order to confirm the viability of the large c instability, the integral (3.89) 

was evaluated numerically for typical velocity profiles u0(x,,Y,,t,) and for a range of c. 

The algorithm used to compute the singular integral (3.89) is due to Tutty and Cowley 

(1986) and is described in appendix C. Although the first interactive stage is unsteady, 

the unsteady one-dimensional velocity perturbation, shown in equation (3.26) in the 

Lagrangian formulation, does not qualitatively change the velocity profiles from the 

initial condition (i.e. the terminal boundary-layer solution); it merely adds a constant 

offset to each profile. Alternatively, in the Eulerian formulation the initial condition for 

the first interactive stage at t, = -1 is given in equation (3.18); it is from this terminal 

solution that the velocity profile develops in the first interactive stage. As a result, it is 

sufficient to consider typical velocity profiles from the terminal solution for the stability 

analysis. The integral (3.89) was evaluated over a range of c for velocity profiles at 

several streamwise locations. The results for each velocity profile were qualitatively the 

same; therefore, the results shown are for the velocity profile from the terminal 

boundary-layer solution at x, = 0 (the center of the domain). Note that it is near x, = 0 

that the high-frequency oscillations were invariably observed in the calculations. 

Physically, this is believed to occur because the streamwise velocity on the central line 

is smallest at x, = 0, and thus the effect of the pressure gradient induced by the 

interaction is largest there. 

Figure 3.8a shows contours of constant Im(/C) on the complex c plane 

obtained by calculating the integral (3.89) for a large number of complex values of c. 

Note that since u0 is very large as % -»0, the integrand approaches zero rapidly near 

the bottom shear layer. Unstable points, if they exist, are located in the upper half-plane 

(c,- > 0) along lines where Ic is real, i.e. Im(/C) = 0; there is one such line in the upper 

half plane which is indicated by A in figure 3.8a. From the eigenvalue relation (3.88), a 

point along line A will be unstable if Ic < 0 and is small. Figure 3.8b shows the results 

of integrations of equation (3.89) for values of c along line A in figure 3.8a.  Also 
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shown are the values of Ic predicted by the expansion (3.90) for large c. It is evident 

that there are no unstable points along line A for c = 0(1) since the magnitude of h is 

increasing as ct -» 0. However, L is small and negative as cl becomes larger, and the 

numerical results do converge to the large c prediction; this confirms the presence of 

the large c instability in the first interactive stage. It is significant to note that the 

instability is present at the very onset of interaction. Whereas instabilities are typically 

brought on by the development of an inflection point in a velocity profile; here, the 

primary features contributing to the instability are (1) the presence of interaction and (2) 

the existence of a shear layer within a finite distance of the wall. The large velocity 

behavior as Y: -> 0 and % -> 2 is not a significant feature of the instability. In contrast, 

the triple-deck cases considered by Tutty and Cowley (1986) require integration of 

equation (3.89) to be carried out across the semi-infinite range (0,«») of the viscous 

sublayer, and the large c instability, therefore, is not possible. 
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Figure 3.8 - Numerical results for Ic, 
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Figure 3.8 - Continued. 
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4. Conclusions 

The numerical solution of the first interactive stage of unsteady boundary-layer 

separation has been obtained in Lagrangian coordinates. The first interactive stage has 

been found to contain a high-frequency inviscid instability which is manifest at the very 

onset of the viscous-inviscid interaction. The presence of the instability precludes a 

grid independent numerical solution from being obtained; as the grid is refined, the 

admittance of shorter wavelength, faster growing modes results in breakdown at 

progressively earlier times. Reductions in the time step yield results which are 

indistinguishable from those with larger time steps even after the instability has become 

prominent. The presence of the instability within the formulation of the first interactive 

stage was confirmed analytically by a linear stability analysis. The instability condition 

was evaluated for typical velocity profiles over a range of the complex wavespeed c, 

and it was found that the instability can occur for large c. It should be emphasized that 

since the instability criterion was met in the initial condition (i.e. the terminal 

boundary-layer solution) of the first interactive stage, the instability is present as soon 

as the interaction comes into effect. 

These results would seem to significantly alter the physical picture of unsteady 

boundary-layer separation. Previously, it was thought that an eruptive boundary layer 

evolves toward the terminal boundary-layer structure of Van Dommelen and Shen 

(1982) and Elliott etal. (1983) until times just prior to this non-interactive singularity 

of 0(Re2ln) when interaction with the outer inviscid flow becomes important. The 

flow on this time scale, corresponding to the first interactive stage, was then thought to 

evolve toward the interacting boundary-layer singularity of Smith (1988b) at a time 

prior to the non-interactive singularity as concluded by Peridier et al. (1991b). It is 

believed that the effects of normal pressure gradient must then be taken into account in 

order to relieve the interacting boundary-layer singularity (Hoyle, Smith and Walker, 

1991). 
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The current results, however, indicate that the first interactive stage of unsteady 

boundary-layer separation is unstable. This suggests that as a boundary layer focuses 

toward an eruption, the flow in the vicinity of the separation point becomes unstable at 

the onset of interaction with the outer inviscid flow. Therefore, it is expected that this 

instability would also be possible within conventional unsteady interacting boundary- 

layer solutions as a significant viscous-inviscid interaction is first provoked by a 

developing eruption. However, it is not surprising that no such instability was 

observed in the numerical results of Peridier et al. (1991b), because the instability has 

short wavelengths in a structure with narrow streamwise extent embedded within the 

boundary layer. On the scale of the first interactive stage, the instability was only 

observed when very high resolution computations were performed. A conventional 

interacting boundary-layer calculation, therefore, would require resolution in the 

separation region which likely is well beyond most current computational resources. 

Instead, a condition analogous to equation (3.88) with (3.89) would need to be found 

and tested in order to determine if and when an instability occurred in an interacting 

boundary-layer calculation. 

Because the present instability was found to exist at the very onset of 

interaction, the question arises as to whether an instability develops prior to viscous- 

inviscid interaction, i.e. in the framework of classical boundary-layer theory. It is 

possible that most calculations of unsteady boundary-layer separation carried out to 

date may not have sufficient resolution to pick up such an instability. The work of 

Cowley, Hocking and Tutty (1985) suggests that an instability may occur in the 

classical boundary-layer equations when a point of zero shear stress develops within 

the boundary layer. Recall that this is also an essential precursor to an unsteady 

separation event. The growth rate 0(am) of the Cowley-Hocking-Tutty instability is 

relatively small, however, and the amplification of small disturbances may not have 

sufficient time to become manifest in a numerical calculation when the boundary layer 

rapidly evolves toward a finite-time singularity. Note that the growth rate in the present 

interactive instability is much larger and is 0(am). More study is necessary in order 
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to determine the connection between the Cowley-Hocking-Tutty instability and 

unsteady separation. 

It also is not clear how the present results relate to the interacting boundary- 

layer singularity found by Smith (1988b). Observing the similarity between the 

conditions for the occurrence of the instability (equation (3.88) with (3.89)) and the 

interacting boundary-layer singularity (equation (2.55)), it may be that as interactive 

effects become important, the boundary layer evolves immediately toward Smith's 

(1988b) interactive singularity just prior to becoming unstable. This seems unlikely, 

however, because the interactive singularity (see §2.6) involves a singularity in the 

pressure gradient which requires the action of interaction over a period of time in order 

to evolve from the smooth prescribed non-interactive pressure gradient. In conttast, the 

instability within the first interactive stage is present at the very onset of interaction, and 

it would seem, therefore, to preempt the interactive singularity. While the present work 

has elucidated some of the effects of viscous-inviscid interaction on unsteady flows, it 

has also raised additional questions with regard to the sequence of events leading up to 

unsteady boundary-layer eruptions in two-dimensional incompressible flows. 
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PART II 

Hypersonic Boundary-Layer Separation 
on a Cold Wall 
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5. Triple-Deck Interaction Theory 

5.1 Introduction 

In part I the asymptotic structure was considered in the limit of high Reynolds 

number for unsteady separation of incompressible boundary layers. In part II the 

asymptotic structure of steady laminar separation for high-speed compressible flows 

will be considered. The classical triple-deck structure for subsonic and supersonic 

flows was discussed in §1.3; here, the triple deck for hypersonic flows will be 

considered both with and without wall cooling. 

Before describing the hypersonic triple-deck theory, some general features of 

hypersonic flow (see, for example, Anderson, 1989) will be discussed. In practice, a 

flow is generally called hypersonic if the Mach number M is greater than about five or 

six. Some examples of hypersonic flight vehicles, therefore, are the space shuttle, the 

Apollo spacecraft and the proposed national aerospace plane which have attained (or are 

expected to achieve) Mach 25, Mach 36 and Mach 25, respectively, upon reentry into 

the earth's atmosphere. Unlike the abrupt change in flow characteristics that occurs in 

going from subsonic to supersonic flow at Mach 1, the transition to hypersonic flow is 

not clearly defined and is characterized by new physical effects which gradually 

become more important as the Mach number is increased. For example, recall from 

inviscid theory that as the Mach number increases, the angle of inclination of a shock 

wave (which might be generated at a sharp leading edge, for example) decreases. 

Therefore, hypersonic flow is often characterized by a very thin shock layer which is 

the region between the outer edge of the boundary layer on the downstream surface and 

the shock wave which was generated at some upstream surface. 

While shock layers may be very thin, hypersonic boundary layers generally 

thicken in the downstream direction much more rapidly than their counterparts at 

slower speeds. This effect is due to the substantial viscous dissipation which takes 

place in a hypersonic boundary layer as the high speed flow is adjusted across the 
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boundary layer to relative rest at the surface. The increased dissipation results in 

significant increases in temperature within the boundary layer which in turn acts to 

increase the viscosity coefficient and decrease the density of the boundary-layer fluid. 

Both of these effects cause the boundary-layer thickness 8 to grow rapidly according 

to 8~MtRex
m, where Al, is the freestream Mach number, and Rex is the local 

Reynolds number along the surface (Stewartson, 1964). This rapid growth in 

boundary-layer thickness can provoke a global interaction with the outer inviscid flow 

and can in some cases eventually cause the boundary layer to merge with the leading- 

edge shock. This viscous interaction is said to be strong near the leading edge of a 

surface but becomes weak downstream if the boundary-layer thickness is small in 

comparison to the body thickness. A further discussion of this global viscous 

interaction has been given by Anderson (1989) and Mikhailov, Neiland and Sychev 

(1971), and a recent review of hypersonic viscous flow research has been given by 

Cheng (1993). The hypersonic triple deck, to be discussed subsequently, applies in 

regions of weak global viscous interaction where instead the interaction is localized and 

is due to some small scale feature along the surface. There are a variety of other 

important phenomena in hypersonic flow for which Anderson (1989) provides a good 

introduction and additional references. 

The triple-deck formulation was extended to the case of hypersonic flow by 

Neiland (1973) and Brown, Cheng and Lee (1990) who considered the boundaiy layer 

on a cooled wall; a special case (y-> 1) of hypersonic flow was also considered by 

Brown, Stewartson and Williams (1975). The consideration of cold wall effects is of 

particular interest for hypersonic flight vehicles which often require some means of 

surface protection from the high temperatures generated within a hypersonic boundary 

layer. Inclusion of the effects of wall cooling bring about three primary changes in the 

triple-deck formulation as compared to the classical triple deck discussed in chapter 1. 

As will become evident from the scalings described in §5.2, the first is an overall 

reduction in the length scales of the triple-deck structure as the surface is cooled. 

Secondly, because of the cold wall, the boundary layer upstream of the triple-deck 

122 



r 
I 

Upstream ß 
Boundary Layer 

a   L_ _ — — 
x* ~Re-m a 

Figure 5.1 - Schematic of the triple-deck structure for hypersonic flow 
over a cold wall near a compression ramp (not to scale). 

region develops a double structure with a thin inner wall layer becoming necessaiy in 

order to adjust the temperature to that at the surface. As will be shown in §5.2, the 

thickness of this wall layer is greater than that of the viscous sublayer in the interaction 

region (see figure 5.1); therefore, an intermediate layer is introduced between the 

viscous sublayer (region I) and the main deck (region II) which is a continuation of the 

upstream inner wall layer into the interaction region. This intermediate region serves a 

similar purpose as the main deck in the classical triple deck; it communicates changes 

between the viscous sublayer and the main and upper decks but does not itself 

contribute to the displacement effect of the boundary layer. Thirdly, the most 

significant effect that wall cooling has on the triple-deck formulation is a reduction in 

the displacement thickness of the viscous sublayer and a corresponding rise in the 

contribution to the displacement thickness due to the main deck. Neiland (1973) found 

that this contribution to the displacement thickness due to the main deck is proportional 
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to the pressure rise induced by the boundary layer. If the average Mach number across 

the boundary layer just upstream of the interaction region is less than one, a pressure 

increase leads to boundary-layer thickening; if greater than one, a pressure increase 

leads to a decrease in boundary-layer thickness. The former case is referred to as 

subcritical and the latter supercritical because of the analogous behavior in subsonic and 

supersonic boundary layers, respectively. The cold wall effect on thickening of the 

main deck introduces an additional term in the interaction law which takes this into 

account. Further details are provided for the hypersonic triple deck in §5.2. 

If the wall temperature is greater than that necessary for a balance between the 

contributions to the displacement thickness due to the viscous sublayer and the main 

deck, as is the case for a hypersonic boundary layer without wall cooling, the 

contribution to the displacement thickness from the main deck is negligibly small, and 

the formulation is the same as the classical triple deck given by Stewartson and 

Williams (1969) and Neiland (1969) for supersonic flow. Numerical solutions of this 

case have been considered by Rizzetta, Burggraf and Jenson (1978) and Ruban (1978) 

for a boundary layer encountering a compression ramp having various small ramp 

angles. Their results reveal that a separation region centered at the corner occurs for all 

ramp angles greater than a critical value. As the ramp angle is increased, the extent of 

the separation region grows, and a plateau is observed to form in the pressure 

distribution near separation. The compression ramp without wall cooling will be 

considered further in §6.4.1. 

Conversely, for very low wall temperatures, lower than the balance discussed 

above, the contribution to the displacement thickness due to the viscous sublayer is 

negligible, and that due to the main deck dominates. This situation has been considered 

recently by Kerimbekov, Ruban and Walker (1993) for subcritical and supercritical 

boundary layers and by Zhikharev (1993) for subcritical boundary layers encountering 

a compression ramp; their results are discussed in more detail in §5.4.2. It was found 

for the limiting case of strong supercritical wall cooling that there are no disturbances 

upstream of the corner and separation occurs downstream on the ramp itself. This case 
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was found to exhibit marginal separation behavior similar to that which occurs near the 

leading edge of thin airfoils at a critical angle of attack (see Ruban, 1981, 1982 and 

Stewartson, Smith and Kaups, 1982). On the other hand, for strong subcritical wall 

cooling, separation can only occur upstream of the corner (Kerimbekov et al, 1993); a 

Goldstein (1948) singularity was found to develop at a separation point in this case, but 

the singularity is found to be removable by the theory described by Smith and Daniels 

(1981). 

In order to provide a bridge between these theories for moderate wall 

temperatures and strongly cooled walls, the triple-deck formulation for hypersonic 

boundary-layer flow on a cold wall will be considered in part II for wall temperature 

ranges where the contributions of the viscous sublayer and the main deck to the 

displacement thickness are of the same order. This range will be defined more 

precisely in subsequent sections. The remainder of chapter 5 will provide the 

theoretical background for this case. The general triple-deck formulation for 

hypersonic flow over a cold wall with a small surface disturbance will be discussed in 

detail in §5.2. The hypersonic triple deck will then be applied to the compression ramp 

geometry, as discussed in §5.3, for which two types of singularities have been 

identified; these are associated with large ramp angles and strong wall cooling and are 

discussed in §5.4. Subsequently, in chapter 6 a solution algorithm will be described for 

the hypersonic triple deck and numerical results given for cases with and without wall 

cooling. 

5.2 Formulation for the Hypersonic Boundary Layer on a Cold Wall 

The following development is a derivation of the two-dimensional hypersonic 

triple-deck formulation for a flat plate boundary layer encountering a small surface 

disturbance when the wall is cooled; this problem was first considered by Neiland 

(1973). The disturbance (such as a compression ramp) is located a distance L from 

the leading edge of the flat plate, and the flow is assumed steady except for possible 
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local unsteadiness which might be provoked by the surface disturbance. The fluid is 

taken to be a compressible ideal gas where the upstream flow is uniform and parallel to 

the plate with speed U„, pressure px, density pM and enthalpy hx. Throughout this 

section primes denote dimensional quantities. The specific heat ratio y is considered 

constant, and the viscosity coefficient //is taken to depend only on the temperature 

subject to the power law 

A>~UoJ' 
(5.1) 

where n is a positive constant, K is the dimensional enthalpy, and /i0 is the value of 

the viscosity coefficient evaluated at the stagnation temperature corresponding to 

h' = h0 = Ul. The Reynolds number and upstream Mach number are defined by 

Reo = P^L,     K = t/-(^)"1/2, (5.2a,b) 

respectively. For hypersonic flow, Re0 and AL are large, but the hypersonic viscous 

interaction parameter % will be assumed small, viz. 

X = M*Re0
m«l. (5.3) 

Physically, the disturbance is assumed to be located far downstream of the leading edge 

so that the global viscous interaction is weak (as discussed in the previous section) and 

has negligible effect upon the boundary-layer flow in the vicinity of the disturbance. 

Note that if the Reynolds number is defined in terms of the viscosity at the mainstream 

static temperature rather than the stagnation temperature, as done here, the hypersonic 

viscous interaction parameter is % = MlRe^n in place of equation (5.3) (see, for 

example, Brown et al, 1990). 
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Figure 5.2 - Geometry and coordinate system for compression ramp. 

5.2.1 The Upstream Boundary Layer 

With origin at the leading edge of the flat plate, coordinates are chosen such that 

x' is the coordinate along the plate and y' is the coordinate normal to the plate as 

shown in figure 5.2. The velocity components u'(x,y') and v\x',y') are in the respective 

x' and y' directions. Upstream of the disturbance, the steady boundary-layer flow on 

the flat plate is described in terms of the scaled independent variables 

x' = Lx,  y' = LM„RevmY, (5.4a,b) 

and the scaled dependent variables 

u' = LL U(X,Y) + ■ ■ ■, V = U„AL R£a V(X,Y) + • • •, (5.4c,d) 

h' = U*H(X,Y)+-, p' = p„ + nMLRe«ulP(X,Y)+-, (5.4e,f) 

p' = p„M:2R(X,Y) + -,     // = /io/z(^J) + (5.4g,h) 
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where p' and p are the density and pressure, respectively. Note that the freestream 

conditions are related to each other through the ideal gas law which gives 

JL = p~ UllMl. Substitution of equations (5.4) into the Navier-Stokes and energy 

equations gives 

nT7dU    n„dU     d(   dU] 
RU3X+RV^Y=^W 

OR. 
dY 

= 0, (5.5a,b) 

RUdH
+RVdH- l A (   3H} 

+ ß 
(duY 
dY 

(5.5c) 

where Pr is the Prandtl number and is assumed constant.  The continuity equation 

becomes 

d(RU)    W=() 

dX   +   dY 
(5.5d) 

The viscosity law (5.1) and the ideal gas equation of state are 

ß = H",     H = 1 
(7-1)*' 

(5.6a,b) 

respectively.   Because hJUl is 0(Mj) as AL-><*>, the conditions required for 

matching to the external flow are 

U-*l, #->0  as  7->°°, (5.7) 

while at the surface 

U = V = 0,  H = gw  at  7 = 0. (5.8) 
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Here, gw is the temperature factor defined by gw = hJIUl; for a specified wall 

temperature distribution, gw may in general be a function of X. 

5.2.2 The Upstream Inner Wall Layer 

When gw is 0(1), the solution to (5.5)-(5.8) is uniformly valid throughout the 

boundary layer upstream of the obstacle, and the analysis would proceed to 

consideration of the interaction region. However, gw « 1 for a cold wall, and H must 

then vanish to leading order at the surface; therefore, the conditions on the upstream 

boundary layer are 

U = V = H = 0  at  Y = 0. (5.9) 

In view of the viscous dissipation term in equation (5.5c), H is 0(1) in the boundary 

layer, but according to equations (5.8) and (5.9) H must vanish at the wall and as the 

mainstream is approached. This suggests that there is not a uniformly valid solution, 

and an additional layer is necessary within the upstream boundary layer adjacent to the 

surface in order to adjust the enthalpy H to gw at the surface. From the viscosity law 

(5.6a), the solution to the upstream boundary-layer equations (5.5) along the surface are 

of the form 

U-^a(X)Y^, H^b(X)Y^,  R-> ryJuLx)   as  7~*0'       (5-10a>b>c) 

where a(X) and b(X) are arbitrary functions. Therefore, H -> 0 and R -> °° as 

Y -> 0, and the solution is not valid all the way to the surface. According to equation 

(5.10b) H approaches zero at the wall, and in order to satisfy the last of conditions 

(5.8), a region with thickness Y^i = 0(gw) is required near the wall. This thin region is 

denoted by a, as indicated in figure 5.1, while the rest of the upstream boundary layer 
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is referred to as region j8. From the scalings (5.4) in region ß and the form of the 

solution along the wall (5.10), the normal variable in the inner most region a is scaled 

according to 

y' = LM„g:+lR^Y, (5.11a) 

with new dependent variables defined by 

« + 2 p„-l/2 u' = U„gw U(X,Y) + .-., V = U„M„g:+2Re-0
iU V(X,Y) + -,   (5.11b,c) 

h' = U*gwH(X,Y) + -, p' = p„ + &M^Re-0
mP(X) + -,       (5.11d,e) 

p' = p„M:2gjR(X,Y) + -,      i/ = H>g:fKX,Y)+»'. (5.11f,g) 

Substitution into the Navier-Stokes equations and the energy equation shows that the 

viscous and conduction terms are dominant, and the governing equations in region a 

are 

/i— =0, 
dY 

d_ 
df 

U—T: (5.12a,b) 

The viscosity law (5.6a) and ideal gas equation (5.6b) become 

ß = H",      H: 1 
(y-i)i? 

(5.13a,b) 

In order to match with the solution in region ß as Y -> 0, equation (5.10) requires 

Ü->a(X)Y^, H-*b(X)Y»^   as  F^°o, (5.14) 
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and the boundary conditions along the surface are 

U = V = 0, H = \   at Y = 0. (5.15) 

Integration of equations (5.12) subject to the conditions (5.14) and (5.15) gives the 

solution in the upstream inner wall layer and 

ÖzgWM^-g, (5.16a) 

H = {[b(X)]n+lY + l}^. (5.16b) 

The form of this inner solution along the surface is then given by 

U->-t-[a(X)[b(X)YY+-, //->1 + -, #->l + -   as  y^O.     (5.17a,b,c) 

5.2.3 Settlings of the Interaction Region 

As the upstream boundary layer encounters the surface disturbance (e.g. a 

compression corner), a short streamwise region develops in which viscous-inviscid 

interaction becomes important. Within this region the flow is governed by a triple-deck 

structure which is modified slightly by the presence of the upstream inner wall layer. 

This structure is shown in figure 5.1 where the disturbance is shown as a compression 

ramp at a small angle of inclination. In this section the length scales of the viscous 

sublayer (region I) and the magnitudes of the flow variables therein are sought. It will 

be assumed, and subsequently verified, that the viscous sublayer is much thinner than 

the inner wall layer of the upstream boundary layer. Thus the interaction region I sees a 

linear velocity, according to equation (5.17a), far upstream Substitution of the scalings 

(5.11a,b) for the inner wall layer into the form of this inner solution along the surface 

(5.17a) gives an estimate of the order of magnitude of the streamwise velocity 
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component in region I, 

U. 

relative to the thickness of the viscous sublayer y'. Here, the ~ is used to imply that 

both sides are of comparable magnitude. It is expected that the pressure variation A// 

in the outer inviscid flow (region III in figure 5.1) induced by the interaction is 

sufficient to provoke a nonlinear convective response in the viscous sublayer. 

Therefore, a balance of the nonlinear convection terms and the pressure gradient term in 

the streamwise momentum equation is expected; thus, 

*</ — %■ (5.19) 
dx     ox 

Because the problem in the sublayer is assumed to be nonlinear, the variation in 

streamwise velocity Aw' in region I is of the same order as u. So from the scale of 

the density in the upstream wall layer in equation (5.1 If), it follows from equation 

(5.19) that 

p.M:V("02~A/. (5.20) 

The flow in region I is also viscous, and a balance with the convective terms requires 

(5.21) ,   . du      d 

I  ft) 

in which case equation (5.1 lf,g) give a relation of the form 
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P-M?&l!Q~K>&7T?, (5-22) Ax (/) 

where Ax' is the streamwise extent of the interaction region. In addition, it is easily 

shown from linearized compressible flow theory that the pressure induced in the outer 

inviscid flow is proportional to the slope of the streamlines just outside the boundary 

layer. A primary disturbance in the outer flow is assumed to be induced by the 

nonlinear response and the displacement effect of the viscous sublayer. This 

relationship is the Ackeret formula and gives 

M„   Ax 

Equations (5.18), (5.20), (5.22) and (5.23) are four equations for the four unknowns 

Ac', y', u' and A// which when solved give 

Ax' ~ L Mln £♦"» RC,       y'~LM?!2 £♦" Ref", (5.24a,b) 

u' ~ LL Mla g™ Re,v\ A// ~ p.. Ul M:1 R$m. (5.24c,d) 

It follows from the continuity equation that 

V-U^gfRe?". (5.24e) 

The balance in equation (5.23), from considering the pressure induced by the 

displacement effect of the viscous sublayer, and the subsequent scalings (5.24) assume 

that the order of magnitude of the contribution to the displacement thickness due to the 

main deck (region II) is at most comparable to that due to the viscous sublayer (region 

I) For the case when there is not significant wall cooling, the contribution due to the 
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main deck is negligible compared to that due to the viscous sublayer. However, when 

the wall is cooled, the displacement effect due to the viscous region decreases, and 

eventually the contributions of regions I and II to the displacement thickness of the 

boundary layer become of comparable magnitude. Here, the magnitude of the 

temperature factor gw required for this situation to occur will be determined, and in 

order to do this, the contribution due to the main deck must be considered. From the 

magnitudes of the flow variables required to match to the upstream boundary layer 

(5.4) in region ß, the balance in equation (5.19) and the fact that u ~ U„ leads to the 

relationship 

Au'~U„^~, (5.25) 

in region II instead of equation (5.20). Whereas the balance (5.21) in region I is 

viscous, the flow in region II is inviscid to leading order, and conservation of entropy 

requires 

: constant (5.26) 
/\?' on 

along a streamline. Application of this law at two points along a streamline passing 

through region II indicates that 

Ap'~p'^f. (5.27) 

Notice from the estimate for the magnitude of the pressure (5.24d) in the interaction 

region and the definition (5.3) of the hypersonic interaction parameter that Ap'/fL ~ Xm- 

Since % is assumed small in the region of the interaction, the perturbations in the flow 

variables, from (5.25) and (5.27), in region II are linear. In addition, taking d' to be 

the normal distance between two arbitrary streamlines in region II and Ad! to be the 

variation in that distance, mass conservation (p' u' d' - constant) of the flow between 
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the streamlines gives the relation 

Ad'~d'^. (5.28) 

Just as for the variations in velocity and pressure, therefore, the variation in separation 

distance between streamlines in region TJ is small. But the interest here is on the case 

for which this variation is of the same order of magnitude as the displacement of 

streamlines due to the viscous sublayer (region I). In such cases, both regions I and II 

have comparable contributions to variations in the displacement thickness of the 

boundary layer. From the scale of the upstream boundary layer (5.4b), d' is 

0(LM„Revm), and from equation (5.28) Ad' = 0(L M. R%m %m) or 

Ad' = 0(LMl Ref*) using equation (5.3). Therefore, Ad' is Oiy'), where / is the 

scale of the viscous sublayer defined by equation (5.24b), when 

g:^~MlaRe,m, (5.29) 

which occurs for gw small in the limit Re^ -> °° with M„ fixed. Observe from 

comparison of the vertical scales for the viscous sublayer in equation (5.24b) and 

upstream inner wall layer in equation (5.11a) along with the balance (5.29) that the 

viscous sublayer (region I) is thinner, by a factor which is 0(g£), than the upstream 

inner wall layer a; this verifies the assumption made previously in this section. 

Similarly, from equations (5.4b) and (5.24a) the streamwise extent of the interaction 

region is larger, by a factor which is 0(MJ, than the thickness of the upstream 

boundary layer. 
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5.2.4 The Viscous Sublayer 

The scalings (5.24) determined in the previous section for the interaction region 

in the vicinity of the surface disturbance suggest the following scaled independent 

variables in region I: 

t' = LV:lM„g:RevWt\ (5.30a) 

x' = L + LMlag:^Re,mx,     y'= L M™ &^ Re,™ y\ (5.30b,c) 

and expansions for the flow quantities 

ii' = U„MinglnRe;mu(x,y/) + -, 

v' = [/^fl^^vW/)+-, 

p' = R. + P~ Ul AC1 Relw p\x,y\f) + • • ■ 

h'=Ulgwh\x*,f/) + -, 

p' = p„M:2gJp\x*,y*f)+-, 

lS = H>&ß<?c,y,t)+-. 

(5.30d) 

(5.30e) 

(5.30f) 

(5.30g) 

(5.30h) 

(5.30i) 

Substitution of these scaled variables into the energy equation yields 

dh*     . dh"     . dh*) 
—T + U   TT-T+V   —- 

^dt dx dy ) 

j_d_( .&T 
?r dy\ß dy\ 

(5.31) 
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while the viscosity law and ideal gas equation become 

^=(0\   Ä*=öZTj7' (532a'b) 

respectively. Since the viscous sublayer is much thinner than the inner wall layer of the 

upstream boundary layer (region a in figure 5.1), the solution in region I must match 

to the condition (5.17c) as x* -> - °° and specifically 

ä*-»1   as x*->-°°. (5.33a) 

Because the interaction region is very short in the streamwise direction, the temperature 

of the wall may be considered constant through the interaction region; thus, 

h' = l   at y* = /VA (5.33b) 

where fix*/) is the prescribed surface shape. From consideration of the asymptotic 

behaviour of h* as y* -» °°, it can be shown that there is no variation of ti near the outer 

edge of the viscous sublayer; therefore, in order to match to the upstream boundary 

layer(5.17c) 

Ä*-»l   as y*-»oo. (5.33c) 

Hence, for an initial enthalpy distribution in region I of h* = 1 for all (x*,y*), the solution 

to the energy equation (5.31) subject to the boundary conditions (5.33) is simply 

h\x,y*/)=l. (5.34a) 

It follows from the viscosity law (5.32a) and the ideal gas law (5.32b) that 
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/zW/) = i.   P W/) = i (534b'c) 

respectively; therefore, the flow in the viscous sublayer is incompressible to leading 

order. With the result (5.34), substitution of equations (5.30) into the Navier-Stokes 

equations gives the following form of the incompressible boundary-layer equations 

1 du*      » du*      * du* 
dt dx dy J 7-1 

and the continuity equation becomes 

dp     tfu        dp 
TT + Z—2,     T^=0' (5.35a,b) 
dx     dy dy 

du*    dv*    _ /-c oc N 
^r +^ = 0. (5-35c) dx     dy 

The no-sup and zero normal velocity conditions, 

w* = 0,  v* = |C   at y*=f(x*,t*), (5.36) 
dt 

apply at the surface. In order to match to the upstream flow (5.17a) in region a, the 

streamwise velocity must be of the form 

u* ->Ay* + ■■■   as x*-*-°°, (5.37) 

where X = a b"/(n + 1). The constants a and b are the limiting values of a{X) and 

b(X) as X -> 1 which must be obtained from a solution of the upstream boundary 

layer. The solution to the first of equations (5.35) at the outer edge of the viscous 

sublayer can be shown to be of the form 

«'■4A/ + UV/)+-   as /-»oo, (5.38a) 
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where A*(x*/) is a displacement function which is unknown and to be found from a 

solution to the full triple-deck problem. Substitution of (5.38a) into the continuity 

equation (5.35c) then gives 

v*_>_;i^Lv*+-   as /-»oo. (5.38b) 
ox 

Thus, the flow within the viscous sublayer (region I) is governed by equations (5.35) 

with the conditions (5.36)-(5.38). Finally, note that the slope of the streamlines at the 

outer edge of region I follows from equations (5.38) and (5.30d,e) and is given by 

4=-i^1/4t^. (5-39) 
u Bx 

5.2.5 Region Ia 

In more traditional triple-deck formulations, the upstream boundary-layer 

equations are uniformly valid across the entire boundary layer and there is no inner wall 

layer; therefore, the discussion at this juncture would now turn to consideration of the 

main deck. However, for the present case with wall cooling, the upstream inner wall 

layer a gives rise to an additional layer between regions I and II which will be called 

region Ia and which is essentially a continuation of the flow in the upstream inner wall 

layer. Because the viscous sublayer is very thin on the scale of the upstream inner wall 

layer, region Ia has the same thickness and shares the same normal coordinate Y as 

region a, given by equation (5.11a). Comparison with the normal variable in the 

sublayer y* defined in equation (5.30c) gives the relationship 

f=M:mgl<2Re!)
,iY (5.40) 

between the two normal variables.   Therefore, from the expansions in region I 

139 



(5.30d,e) and the relationship (5.40), matching to the conditions at the top of the 

viscous sublayer described by equation (5.38) requires the flow in region Ia to be of 

the form 

1/-*Um&fXf+Um Min «>« Re,m X A\xf) + 
9A\, } as ?->0. (5.41) 

dx* 
V-*-U„gwRe,w^Y + 

The time scale and streamwise length scale are the same for all layers within the 

interaction region; therefore, the matching conditions (5.41) suggest the following 

expansions for the flow variables in region Ia 

u' = U„ gw U0(Y) + Um Mf gi« R%m titfJS) + ■ ■ ■, (5.42a) 

v' = LL gw Re*w WS/) + -, (5.42b) 

p' = p„ + p„ Ul MZl Reöm P.ixj/) + • • •, (5.42c) 

hf=UlgwH0(Y) + UlMl'1gfR^mH1(x\Y/)+-, (5.42d) 

ft = pm AC2 gj R\(Y) + p..M;
M

 g^Re,m Rx(x\Y/) + • • •, (5.42e) 

^ = M> £&(*) + •". (5-42f) 

Note that the leading-order terms for p', h', p' and p! are of the same magnitude as 

in the viscous sublayer given by equations (5.30f-i). Comparison of the expansions 

(5.42a,b) with the conditions (5.41) gives 
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In addition, matching to the solution in region a given by equation (5.16) with the 

scalings (5.11) requires the leading-order solution in region I„ to be 

jj0(Y) = f[bn+lY+l}^-f, (5.44a) 

H0(Y) = [bn+1Y + l]^, (5.44b) 

where, as before, the constants a and b are the limiting values of a{X) and b(X) as 

X -> 1. Substitution of the expansions (5.42) into the equation of state and viscosity 

law gives 

#0 = L_      Hx= 5_^,     & = #. (5.45a,b,c) 
(7-1)^, (7-D^o 

Therefore, from equations (5.44) and (5.45a,c), the leading-order terms in the 

expansions (5.42) for region I« are a continuation into the interaction region of the 

solution in the upstream inner wall layer. Substitution of the expansions (5.42) with 

the scalings (5.30a), (5.30b) and (5.11a) for t', x and /, respectively, into the 

Navier-Stokes equations gives 

*§♦«§-*  §-* 

and similarly the energy equation becomes 
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dH,    fdH0 tfn^- + V!^ = 0. (5.47) 

Therefore, the flow in region I« is inviscid, and although the equations do not contain a 

time derivative, the boundary conditions (5.43) are time-dependent due to the unsteady 

displacement function A\x\t*) associated with the lower deck. The continuity equation 

becomes 

Substitution of the expressions (5.45a,b) from the equation of state into the energy 

equation (5.47) produces the relation 

OM + Ao, (5.49) 
ax dY 

from which it is seen that the continuity equation (5.48) is the same as that for the 

incompressible case, i.e. 

^ + ^ = 0. (5.50) 
a**  dY 

The solution to equations (5.46), (5.47) and (5.50) which satisfies the matching 

conditions (5.43) is 

a=AV/Ä   M=-t^o(n Ä^AV/Ä  PX=P\XX). (5.51a,b,c,d) 
dY ox dY 

These solutions for Vx and Vx were obtained from a simple integration of equation 
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(5.46a) with the continuity equation (5.50). The energy equation (5.47) was then 

integrated to obtain the solution for Hh and (5.5 Id) is a consequence of (5.46b). 

Observe from the expansions (5.42a,b) and the solution (5.51b) that to leading order 

the slope of the streamlines throughout the entire region Ia is 

fc-Re^^L, (5.52) 

which is the same as the slope of the streamlines at the outer edge of the viscous 

sublayer given in equation (5.39). In summary, region Ia is simply a continuation of 

the upstream inner wall layer through the interaction region and communicates changes 

in the displacement function A*(x\t*) and pressure p*(x*f) between the viscous 

sublayer and the main deck. To consider the form of the solution in the main deck, it is 

useful to obtain the limiting solution at the top of region Ia. Taking the solution 

(5.44a,b) and (5.51a,b,c) as Y -> °o and substituting into the expansions (5.42a,b,d) for 

u, V and h' gives 

u'-*U„gwa F-i + - + U„Mlngl,2Re;mA*(x'S)7^Tt^T+.:,   (5.53a) 

dA*        i 
V^-U„gwR%w — af"^ + -, (5.53b) 

^[/.2
&|)^ + "- + ^r^Ä^AV/)^ir^ + -,   (5.53c) 

as Y -> oo. 
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5.2.6 The Main Deck 

Next, the flow in region II, the main deck, is considered. It is found to.be 

similar to region I« in that it is a continuation of the upstream boundary layer ß. In 

the main deck, the normal coordinate Y is the same as that in region ß given by 

equation (5.4b), while the time scale and streamwise length scale are again the same as 

the rest of the interaction region and given by equations (5.30a,b). Relating the normal 

coordinates in regions a from equation (5.11a) and ß from equation (5.4b) produces 

Y = g-(n+1)Y, and writing the form of the solution at the top of region Ia equation 

(5.53) in terms of Y gives the conditions 

u'^ U„a 1^1 + UmM?&™R*w
^V/)^J rrfr + ....       (5.54a) 

y_>_LLÄ<b-i"^Lfly=±T + ..., (5.54b) 
ox 

h' -* Ul b Y^T + Ul Mia £+™ Rtf* A\x/) JL-r** + •>;      (5.54c) 

as Y -» 0.  These matching conditions suggest the following expansions for the flow 

quantities in region II: 

u'= LL Ü0(Y) + U„MÜ2g:+mReöl* Üx(x,Y/)+-, (5.55a) 

v'=^i?eö1/4W,y/) + -, (5.55b) 

p' = IL + P~ Ul AC1 Re?" Pi(x,Y/) + -, (5.55c) 

K =UlHQ{Y)+UlMln g:+m Re,m Hl(x,Y/) + -, (5.55d) 
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p' = p„M:2 UY) + p„MZ3n g:+m R^m R1(x,Y/)+ -. (5.55e) 

From a comparison of these expansions with the conditions (5.54), it is evident that 

matching to region Ia requires 

Ü0->aY-£r+-,   Vl->AXx\t)-^jT^+- 
-,.* }  as  y-»0.      (5.56a,b,c) 

~ oA      T7_L_ 
^_>_—.-a y«+i + — 

ax 

The leading order terms U0, H0 and RQ are obtained by matching as x* -> - <*> to the 

solution in the upstream boundary layer (see §5.2.1) as X -> 1 and must also satisfy 

the leading terms of (5.54) in order to match to region Ia below. Therefore, Ü0, H0 

and ÄQ are assumed known from the upstream solution. To determine the perturbation 

functions Üu % ßl and Rh the expansions (5.55) are substituted into the Navier-Stokes 

and energy equations from which it is found that 

«§+/U§=-S*§,     §=0, (5.57a,b) 

b%^+WiWs!ro°W' (5-58) 

where a new dimensionless parameter S* = Min g-(n+m) Reöm appears in front of the 

pressure gradient terms. In normal circumstances, the wall temperature is moderate 

and the temperature factory is 0(1) and S*« 1. However, for gw « 1 and of the order 

given by equation (5.29) the wall is cold and S* is 0(1). The latter case is the situation 

of interest here. From equation (5.57) it is observed that the flow in region II is also 

inviscid (just as in region Ia). 

Substitution of the expansions (5.55) into the continuity equation produces 
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a BRX    ~ 3Q    - dito    s dVx 

obc* 
+ ^—1 + ^-^ + ^-1 = 0, 

dx dY dY (5.59) 

and from the ideal gas equation of state it is easily shown that 

Hn = 
(7-D/V 

(5.60a) 

(y-l)i^     '    (y-1)^2 (5.60b) 

Substitution of equations (5.60) into the energy equation (5.58) then yields 

.3^       d/^ 3/> 
(5.61) 

which when introduced into the continuity equation (5.59) gives 

agav(_ ..„aft 
(5.62) 

Through substitution of dÜxldx* from equation (5.62) into the stream wise momentum 

equation (5.57a), a first-order equation for % is obtained, namely 

ay   a dr *-> ^ 
l (5.63) 

Defining M0(F) to be the local Mach number across the upstream boundary layer as 

X -> 1, it is readily determined that Mß = ^ Ü70
2 to leading order. Therefore, the 

solution to equation (5.63) which satisfies the conditions (5.56a,c) as Y -> 0 is easily 

obtained and 
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«-«{-S^ffcH" (5.64) 

The solutions for the other perturbation variables may then be obtained using the result 

(5.64). From the expansions (5.55a,b) and evaluating (5.64) at the outer edge of region 

n, the slope of the streamlines at the outer edge of this region is found to be 

5°** 
1/4 ^ + 5*f|C) for large Y, 

dx dx 
(5.65a) 

where 

1 k2 dF. (5.65b) 

This integral first appeared in a study by Pearson et al. (1958) and is sometimes 

referred to as the Pearson integral. Here, <5b is the thickness of the boundary layer just 

upstream of the interaction region. From a comparison with the result (5.39) in the 

viscous sublayer, it is evident that the first term on the right hand side of equation 

(5.65a) is due to the displacement effect of the viscous sublayer (region I), while the 

second term is the contribution due to the main deck (region H). Note that when S*« 1, 

corresponding to the case for which there is no wall cooling, the contribution from the 

main deck is negligible and the problem reduces to the conventional triple-deck 

formulation. On the other hand, for S*» 1 the displacement effect due to the main deck 

dominates that due to the viscous sublayer; this case has recently been considered by 

Kerimbekov, Ruban and Walker (1993) and Zhikharev (1993). In the current 

investigation the intermediate range is of interest corresponding to wall temperatures 

for which 5* = 0(1) and for which both regions I and II contribute to the displacement 

effect. 
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5.2.7 The Outer Inviscid Flow 

The flow in the local interaction region III riding above the boundary layer 

consists of perturbations about the uniform external flow variables UM px, h„ and p„ 

and is associated with the displacement effect of the boundary layer within the 

interaction region. Again, the time scale and streamwise length scale are given by 

(5.30a,b), but the normal coordinate Y* is defined by 

y^LMi^^R^r. (5.66) 

From equation (5.65a) it follows that the expansions of the dependent variables in 

region IE have the form 

u' = LL + LL AC1 R%m u&'Xf) + .», (5.67a) 

V = & R%m vtfXS) + -, (5.67b) 

p' = IL + P~ Ul AC1 Reöm px{xX/) + • • •, (5.67c) 

h' = K+ Ul AC1 Re,w hy(x*X/) + -, (5.67d) 

fS = p„ + p„M„Re;mp1(xXS)+ -, (5.67e) 

and the matching condition to region II below is 

v,->- —+S*£-^  as r*-»0. (5.68) 
ax dx 

Substitution of the expansions (5.67) into the Navier-Stokes equations gives 
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du! _    dp{        dvx _    dpi 

dx*       dx*'      dx*       dY* 

and into the energy equation provides 

dhy _ dpi 

dx*    dx*' 

The continuity equation becomes 

dpi     dv{ 

(5.69a,b) 

(5.70) 

# + aF=0' (5-71) 

and the ideal gas equation of state gives 

Integration of equations (5.69a) and (5.70) subject to the undisturbed flow conditions 

as x*2 + Y*2 —> oo gives the following relations for linearized compressible flow 

Ul{x*,Y*,t*) = - Pl(x*,Y*/),     h^J*/) = Pl(x*,Y*/). (5.73a,b) 

It follows from substitution of the result (5.73b) into the equation of state (5.72) that 

pl(xX/) = YPi(x*X,t*), (5.74) 

which when substituted into the continuity equation (5.71) and then combined with 

equation (5.69b) leads to the following wave equation for px 
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IIP1_IPL=0 (575) 

Then from substitution of the condition (5.68) into equation (5.69b), it follows that 

to^M-filEi  as  r*->0, (5.76) 
dY*      dx1 dx2 

in order to match to region II below. In general, solutions to equation (5.75) are of the 

form 

Pl(x*,Y*/) = f(x* - £=) + g(x* + £=), (5.77) 

but for flow from left to right in the upper half plane with the disturbances located at 

Y* = 0, only right traveling waves are possible; thus, g must be equal to zero. The 

function/is determined from the condition (5.76) as Y* -> 0 leading to the result 

/(**/) = PiOc',0,0 = - ^r + S* £ |^. (5.78) 

This equation is the interaction law coupling the pressure at the base of the outer 

inviscid region (which is imposed across the boundary layer) and the displacement 

effect of the viscous sublayer and main deck. Observe from equation (5.78) that when 

£>0, a pressure rise (i.e. dp*/dx*>0) leads to an increase in the displacement 

thickness of region II just as for subsonic boundary-layer flows. In contrast, when 

£ < 0, a pressure rise produces a decrease in the contribution due to the main deck, just 

as for supersonic boundary layers. Therefore, when £ > 0 for the upstream boundary 

layer, the situation is referred to as subcritical, and when £ < 0, it is called supercritical. 
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5.2.8 General Interaction Formulation 

In summary, the solution for the hypersonic boundary-layer flow over a cold 

surface defined by / = LMÜ2 g^mRetf1* f(x*,t*) is determined from equations (5.35) 

in the viscous sublayer subject to the conditions (5.36)-(5.38) and the interaction 

condition (5.78). In order to scale out the constants X and 7 from these equations, it 

is convenient to apply the following transformations: 

t* = X-3nt,     x* = (y-l)mX-5Mx,     y* = (7-D1/2^3/4(y + /),    (5.79a,b,c) 

1/2 13/4 *       r«,     1 \l/2  1 1/4 *       /„,     1 \l/2 1: u =(7-1)   A   u,     v =(7-1)   A 
dt        dxj 

(5.79d,e) 

p=Xmp,     A* = (r-D1/2A-3/4(A-/), (5.79f,g) 

/ = (7- l)m A"3'4/,     5* = (7- Dlß A"5/4 5. (5.79h,i) 

The scalings (5.79) also contain a Prandtl transposition, under which the boundary- 

layer equations are invariant, so that the wall conditions may be applied at y - 0. 

Applying the transformations (5.79), the interaction formulation in a general form 

becomes 

du       du       du       dp    du 
— + u — + v — = -—- + —, 
dt       dx      dy       dx    dy 

(5.80a) 

du    dv _ 

dx    dy 
(5.80b) 

P=-dx-+dx- + S£te> 
(5.80c) 
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M = v = 0  at y = 0, (5.80d) 

w->>> + •••   as x-»-«>, (5.80e) 

u-)y + A{x,t) + -~   as y->°o. (5.80f) 

This set of equations applies for hypersonic boundary-layer flows over cold walls 

encountering a small surface disturbance. The scaled equation of the surface is 

assumed to contain a small disturbance in the sense that/(x,0 is 0(1) within the 

sublayer scalings (5.30). And by cold wall it is meant in the present context that 

S = (y-iymPi5MMÜ2g-(n+mRe0
m is 0 (I) where the temperature factor 

gw = hJIUl« 1. Here, hj is the enthalpy at the wall. The behavior of the boundary 

layer within the interaction region is determined by the sign of £, where 

Jo   K 
dr. (5.8i) 

Here, <50 is the thickness of the boundary layer, and M0(Y) is the Mach number 

distribution across the boundary layer just upstream of the interaction. If the average 

Mach number is less than one, £ > 0 and a pressure rise leads to thickening of the 

main deck; this is called the subcritical case. On the other hand, if the average Mach 

number is greater than one, then £ < 0 and a pressure rise leads to a decrease in the 

thickness of the main deck (the supercritical case). 

Note from the set of equations (5.80), that when S £ = 0, corresponding to 

moderate to high wall temperatures, the formulation is the same as the triple deck for 

supersonic flows developed by Stewartson and Williams (1969) and Neiland (1969). 

Numerical solutions for the supersonic triple deck have been obtained by Rizzetta, 

Burggraf and Jenson (1978), Ruban (1978) and Smith and Khorrami (1991) and these 

solutions will be considered further in chapter 6. 
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The theory just presented is based on the approach initiated by Neiland (1973) 

and differs in many respects from the recent study of Brown, Cheng and Lee (1990). 

While the two theories agree qualitatively on some of the effects of wall cooling on the 

hypersonic triple deck, it is not clear how (or if) many of the specific aspects of the two 

theories can be reconciled at present. As in the present approach, the theoiy of Brown 

et al. (1990) recognizes that there is a critical range of surface temperatures for which 

the contribution to the displacement thickness due to the main deck becomes an 0(1) 

effect when the wall is cooled. Brown et al. (1990) describe a critical temperature as 

T^ and found it to be small of 0(#1/(4n+2)) which agrees with the order of magnitude of 

gw in the present theory (compare the result 5.29 with the definition 5.3 for %). The 

range for which the wall temperature Tw = 0{T*) is referred to as the transcritical case by 

Brown et al. (1990), and this range is the primary case of interest in the present 

investigation.     The  interaction  law   used  by  Brown   et al.   (1990)   was 

p = -<7(dA/dx + vdp/dx), where the parameters  a and v  depend  upon  the 

temperature regime. For their transcritical case, they specify that o = 1 and v = 0(l) 

but then only show results for v > 0 which corresponds to the supercritical case (£ < 0) 

in the present theory.  There is no mention of a case corresponding to subcritical 

boundary layers (£ > 0), and it is not clear whether v < 0 is permissible in their theory. 

Brown et al. (1990) also consider wall temperatures much greater than (Tw » T*) and 

much less than (Tw « T*) the critical value and refer to these temperature regimes as 

supercritical and subcritical, respectively. For supercritical wall temperatures, they take 

<7=1 and v « 1, whereas for subcritical wall temperatures v = 1 and o » 1.   Their 

supercritical case, therefore, corresponds to the case without wall cooling (S £ - 0) 

considered here or, equivalently, the classical supersonic triple deck.  Although the 

relationship is not clear, their subcritical case would apparently have some correlation to 

the strong wall cooling case considered by Kerimbekov, Ruban and Walker (1993). In 

addition to these superficial differences in terminology, there are some differences in 

the scalings of the triple-deck formulation itself. These discrepancies make comparison 

of the two theories difficult and preclude a clear reconciliation of the underlying 
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differences. 

5.3 Compression Ramp Geometry 

Although the triple-deck formulation articulated in §5.2.8 applies for general 

surface shapes f(x,t) consistent with the lower-deck scalings (5.30b,c), attention will 

now be focussed on the compression ramp geometry. A compression ramp is defined 

by 

/« = ( °' X<°n, (5-82) 

where a is the scaled ramp angle. From comparison of the streamwise and normal 

length scales (5.30b) and (5.30c) of the viscous sublayer, this represents a very small 

physical ramp angle which is O(Re'0
m). While this geometry is very simple, the flow 

over a compression ramp exhibits boundary-layer separation at the corner for 

sufficiently high a which is characteristic of many viscous-inviscid interactive flows. 

Moreover, the compression ramp geometry has been considered extensively in the 

past. Rizzetta, Burggraf and Jenson (1978), Ruban (1978) and Smith and Khorrami 

(1991) considered the supersonic case, or equivalently the hypersonic case without wall 

cooling, for various a. In addition, Brown, Cheng and Lee (1990), Kerimbekov, 

Ruban and Walker (1993) and Zhikharev (1993) considered the case of hypersonic 

flow over a cold wall. 

5.4 Viscous-inviscid Singularities 

Recently, two types of singularities have been identified as occurring in 

problems associated with supersonic ramp flows and hypersonic flows over strongly 

cooled compression ramps. These are discussed in the following two sections. 
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5.4.1 Large Ramp Angle Singularity 

Many investigators have attempted to consider the nature of the transition from 

small-scale to large-scale separation in high Reynolds number flows. Such attempts 

have in general been unsuccessful because severe numerical difficulties are often 

encountered once a separated flow region begins to increase substantially in size. 

Smith (1988a) has observed that many interacting boundary-layer flow calculations 

exhibit increasing maximums in the pressure gradient and decreasing minimums in the 

wall shear at some point between separation and reattachment as the controlling 

parameter is increased. In the case of shock-induced boundary-layer separation, the 

controlling parameter is the strength of the shock; for surface humps, it is the hump 

height. This behavior may be observed in Rizzetta et al. (1978) and Ruban (1978) for 

the compression ramp, where the ramp angle a is the controlling parameter. Smith 

(1988a) developed a general theory for the reversed-flow singularity in viscous-inviscid 

interacting flows at high Reynolds number, and Smith and Khorrami (1991) compared 

the theoretical prediction with numerical results for supersonic flow over a ramp. 

Referring to the value of the controlling parameter at which the singularity 

occurs as as and the streamwise location of the singularity as xs, the general theory 

describes a singularity in which 

max( d^J ~* + °°'  min^ "* ~ °°   as  a~*a^ (5.83a,b) 

where 

max(dp/dx) 

[min(Tj]2 -> 0(1). (5.83c) 

Here, p is the pressure, and xw is the wall shear. The flow in the immediate vicinity 

of the singularity develops on a short streamwise length scale (x - xs) = 0(A) and is 
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inviscid to leading order. The maximum in the pressure gradient and minimum in the 

wall shear have the following orders of magnitude 

ma^j-A1,     min(Tj~-A1/2, (5.84a,b) 

where A -> 0+ as a^> a;.   For the case of the supersonic compression ramp, the 

streamwise length scale is 

A = (as-ccf. (5.85) 

The numerical results of Smith and Khorrami (1991) did not precisely pinpoint the 

value of as for the supersonic ramp, but they found it to be "somewhat below 9." 

The implication of these results is that the interactive boundary-layer 

formulation fails for even moderate values of the controlling parameter. In order to 

relieve the reversed-flow singularity, it was suggested by Smith (1988a) that a short 

streamwise region forms locally about x=xs. In this region the inviscid Euler 

equations would govern and normal pressure gradient effects become important and act 

to relieve the singularity. This stage would act on an 0{Re^5l%) streamwise length scale 

in the triple-deck case and on an 0(Re^m) length scale in the finite Reynolds number 

case. 

5.4.2 Strong Wall Cooling Singularities in Hypersonic Flow 

For the case of hypersonic flow over cooled walls (as formulated in §5.2), 

Kerimbekov, Ruban and Walker (1993) and Zhikharev (1993) considered the flow 

over a compression ramp for a situation where the wall was cooled to the point where 

S£ became very large. Recall that as the wall is cooled, the contribution to the 

displacement effect due to the main deck increases relative to that due to the viscous 
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sublayer. When S£ becomes very large, the contribution due to the viscous sublayer 

ultimately becomes too small to influence the leading-order pressure distribution in the 

external flow. Therefore, the interaction is an inviscid-inviscid one between the inviscid 

main deck and the inviscid outer flow. In order to investigate this case, a new 

dimensionless parameter is introduced; the Neiland number is defined by 

N = 
.5     *4i  „i4ll/3 X5 s4|ff 
(7- I)2 

= [S|£fl4ß. (5.86) 

where S = A5/4 5*/(y- 1)1/2. The Neiland number N represents the ratio of the 

contributions to the displacement thickness due to the main deck and the viscous 

sublayer. Kerimbekov etal. (1993) and Zhikharev (1993), therefore, considered the 

case where iV -> °°. The formulation (5.80) may be recast such that the dependence on 

Nis shown explicitly. To this end, the variables are scaled as follows 

x = Nmx,     y = Nmy, (5.87a,b) 

u = Nmü,     v = AT1/4v,     p = Nmp, (5.87c,d,e) 

A = NmÄ,     f = Nmf. (5.87f,g) 

Considering the case of steady flow, and defining the streamfunction by a - dy//dy, 

v = - dyf/dx, the formulation in equations (5.80) becomes 

^ll-_^lll = _^l + ll. (5.88a) 
dy dx dy    dx dy2        dx     3y3' 
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Y=^ = 0 at y = 0, (5.88c) 
dy 

y/^ly2 + ...   as jc->-<», (5.88d) 

!//■-> ij2 + A(.x) )> + ••■   as y->°°. (5.88e) 

The surface geometry is given by 

I ax,x>0 

where the ramp angle is now defined by 

ä = NAna. (5.89b) 

Now from the interaction law (5.88b), the effect of increasing the Neiland number is 

evident. As N becomes large, the first term in the interaction law, representing the 

contribution to the displacement thickness due to the viscous sublayer, becomes small. 

Kerimbekov et al. (1993) considered the solutions to (5.88) with (5.89) for 

both the subcritical (f > 0) and supercritical (£ < 0) wall cooling cases, while Zhikharev 

(1993) considered solutions for the subcritical case. The form of the interaction law 

(5.88b) suggests the following expansions for the streamfunction, pressure distribution 

and displacement function 

W(x,y) = y0(*,30 + W"1 WM) + -, (5-90a) 

p(x) = Po(x) + AT1 Pl(x) + • • •, (5.90b) 
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A(x) = 4,0c) + AT1 Ar(x) + • • •. (5.90c) 

Substitution of the expansions (5.90b,c) into the interaction law (5.88b) gives the 

following expression for the leading-order pressure term 

p0 = sgn(£)^ + äH(x), (5.91) 
ax 

where H(x) is the Heaviside unit step function. The solution of equation (5.91) for a 

supercritical boundary layer (£ < 0) is 

ft=(-„0, ***£• (192) y
     \a(l-e-*),x>0 

while for a subcritical boundary layer (f > 0), the solution is 

PA
af-S<l- (5-93) ™   \  a, x>0 

Therefore, for the supercritical case (5.92) there are no disturbances upstream of x = 0 , 

and the pressure begins to increase at the corner toward ä &s x->°° . On the other 

hand, for the subcritical case (5.93), the pressure increases from zero far upstream to ä 

at the corner and is constant along the ramp. Substituting (5.90a,b) into the momentum 

equation (5.88a) in the viscous sublayer gives 

dYo 3Yo     aYo dYo =    dA) , dVo (5 94a) 
dy  dxdy     dx   dy2 dx      dy3 ' 

and the boundary conditions (5.88c,d,e) become 
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Vo = ^ = 0  at y = 0, (5.94b) 
dy 

¥o^jf + '--   as *->-«>, (5.94c) 

yf0^>jy2 + Mx)y + -"  as ;y->°°. (5.94d) 

Observe that the problem (5.94) is simply a classical boundary-layer problem with a 

prescribed pressure gradient given by either equation (5.92) or equation (5.93). 

Therefore, the solution may be obtained using a conventional numerical procedure 

starting from the initial condition given by equation (5.94c) and marching downstream. 

Such solutions were obtained by Kerimbekov et al. (1993) for the supercritical 

pressure distribution (5.92). The solution for increasing ramp angle ä was found to 

exhibit the phenomenon of marginal separation; there is a minimum in wall shear 

which decreases with increasing ramp angle until eventually a zero is reached at a 

critical ramp angle ä0 = 0.7548 at x = XQ = 0.5. This type of behaviour also occurs in a 

boundary layer near the leading edge of thin airfoils at some critical angle of attack, and 

the marginal separation theory of Ruban (1981) for the airfoil at angle of attack shows 

that a singularity develops at the point of zero wall shear x0 as this critical angle of 

attack is approached. The singularity that develops is weak in the sense that solutions 

of the boundary-layer equations may be obtained downstream of x0. A local interaction 

region develops near x0 in order to relieve the singularity as has been considered by 

Stewartson, Smith and Kaups (1982) and Ruban (1982). It is demonstrated by 

Kerimbekov et al. (1993) that this same marginal separation theory applies to the 

supercritical wall cooling case for large Neiland number. 

For the subcritical wall cooling case, a solution to equation (5.94) subject to the 

pressure distribution (5.93) exhibits a Goldstein (1948) singularity at a point of zero 

wall shear for sufficiently high ramp angle ä. As determined by Smith and Daniels 

(1981), this singularity can be removed by a series of regions which have successively 
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shorter streamwise length scales allowing for a smooth transition into the separated 

region downstream. Physically, this is described as a compensation regime in which 

the combination of the surface shape and the displacement thickness of the boundary 

layer cancel such that the streamlines at the outer edge of the boundary layer are not 

effected by the small surface feature. This is the case when the streamwise extent of 

the surface feature is much smaller than the length of the interaction region as is the 

case here for the local region about the point of zero wall shear within the larger 

interaction region. Kerimbekov et al. (1993) showed that the theory of Smith and 

Daniels (1981) applies to the subcritical wall cooling case for N » 1. 
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6. Hypersonic Boundary-Layer Solutions 

6.1 Introduction 

The hypersonic triple-deck formulation described in §5.2 applies to surfaces of 

general shape with length scales consistent with those of the viscous sublayer and for 

situations with and without wall cooling. In §6.2 a description will be given of the 

algorithm that was used here to solve the hypersonic triple-deck equations. It is based 

on an algorithm developed by Ruban (1978) to solve the classical supersonic triple 

deck, but it has been extended here in order to provide a general numerical procedure 

for two-dimensional unsteady hypersonic triple-deck flows with and without wall 

cooling. The triple-deck equations are first recast in terms of the shear stress as the 

principal dependent variable, as described in §6.2.1, in order to eliminate the need to 

explicitly compute the pressure distribution and the displacement function at each 

iteration during the course of the iterative scheme. In addition, an analytical 

transformation is applied for computational convenience to map the doubly infinite 

streamwise range to a finite domain and also to more accurately resolve the flow near 

the center of the domain; this is considered in §6.2.2. The numerical algorithm, 

described in §6.2.3, is very efficient and couples the interaction condition with the 

boundary-layer equations in the viscous sublayer in a unique manner. Before 

considering the numerical results obtained using this algorithm, the results of Tutty and 

Cowley (1986) will be discussed which suggest that instabilities are possible within 

triple-deck formulations. Therefore, a linear stability analysis of the hypersonic triple 

deck will be considered in §6.3 in order to determine the conditions for which an 

instability may possibly occur. 

The compression ramp geometry has been studied extensively in the past and 

will be considered in detail here. Particular focus will be placed on investigating the 

effect of various levels of both subcritical and supercritical wall cooling on the steady 
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separation within the viscous sublayer over a range of ramp angles. Results for both 

the cold wall case and the non-cold wall case will be discussed in §6.4. 

6.2 Solution Procedure for the Hypersonic Triple Deck 

6.2.1 Shear Stress Formulation 

It is convenient to reformulate the interaction problem (5.80) in terms of the 

scaled shear stress T = du/dy. This procedure simplifies the formulation by allowing 

for the elimination of the pressure p(x,t) and displacement function A(x,t) from the 

streamwise momentum equation. First, define a streamfunction by 

u = ^-,     v = -—. (6.1a,b) 
dy dx 

Differentiating the momentum equation (5.80a) with respect to y and using the 

continuity equation (5.80b) gives the equation for the shear stress 

3T      3T      3T    $T 
— + « — +v — = -r-j. (6.2a) 
at       dx      dy    dy 

An additional equation relating Tand y/ is obtained by differentiating (6.1a) with 

respect to y to give 

|? = * (6.2b) 
dy 

The conditions (5.80d,e,f) provide the following conditions on the streamfunction and 

shear stress: 
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¥=^ = 0  at y = 0, (6.2c) 
dy 

T -> 1   as ^->i», (6.2d) 

T -> 1  as y -> °°. (6.2e) 

Note that the condition in (6.2d) is also applied as x -> + <*> because the interaction is 

assumed local; thus, downstream of the interaction region the flow returns to its 

upstream form. The initial flow distribution is taken to be that for a continuous flat 

plate in which case the initial condition is 

T=1   at * = 0, (6.2f) 

and the ramp geometry is assumed to be introduced abruptly at t = 0. The solution of 

equations (6.2) is then advanced forward in time with the expectation that, at least for 

some situations, the solution will evolve toward a steady state. 

Next, consider the interaction condition (5.80c). From the matching condition 

(5.80f), the displacement function may be written as 

A(x,t) = tim(u-y). (6.3) 

Differentiating the interaction law (5.80c) with respect to x and substituting (6.3) gives 

^=-ilim («-y)l + |(+5f|?. (6.4) 
dx    a*2^-    /J dx2      dx2 

Observe from the momentum equation (5.80a) and the surface conditions (5.80d) that 

the pressure gradient is also related to the shear gradient at the surface by 
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dx    dy 
(6.5) 

,=0 

and from the definition of Tthat 

w =     fdy. 
Jo 

(6.6) 

Substituting (6.5) and (6.6) into equation (6.4) gives the interaction law expressed 

solely in terms of gradients of the shear stress 

dr 
dy y = 0 dx2 f~(T-l)dy + ?4 + S£ — 

Jo dx2 dx 
dt 

dy >=o 
(6.7) 

Therefore, the shear stress ?(x,y,t) is obtained from a solution to (6.2a) with the 

interaction law (6.7) and the conditions (6.2d,e,f). The streamfunction y/(x,y,t) is 

then determined from (6.2b,c) in order to provide the velocity coefficients in (6.2a). 

6.2.2 Finite-Domain Transformation 

Just as for the unsteady problem considered in part I, it is convenient to 

transform the region (-°°,0) < (x,y) < (+ °°,+ °°) into a finite rectangular domain. This is 

accomplished through the transformations 

x = |arctan(f),     y = \ arctang), (6.8a,b) 

so that the computational domain is transformed to (-1,0) < (x,y) < (+1,+ 1). The 

constants a and b are transformation parameters which determine the concentration 

of points in (x,y)-space; reducing a and b focuses more points near the ramp corner 
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at x = 0 and the surface at y = 0, respectively. The transformation (6.8a) also 

eliminates the need to truncate the domain at some finite value of x upstream and 

downstream of the disturbance as has been done in previous studies (see, for example, 

Rizzetta, Burggraf and Jenson, 1978 and Ruban, 1978). The transformation laws for 

(6.8) are 

d_r(x)d     a2 „mEMjL + E^ljL rfi9aM 
te-~s~W   dx2~ a    a  dx+ a2  aje2' ^ya'DJ 

dy      b   d?     dy2      b      b    dy      b2    dy2' 
(6.9c,d) 

where 

JT(£) =4 [1+cos (*$)]. (6.9e) 

Therefore, applying the transformation (6.8) to the momentum equation (6.2a) gives 

dt+   a   Udx+   b   vdy~    b      b    dy      b2    d? 

and the boundary conditions (6.2d,e) become 

T->1   as Je->±1, (6.10b) 

r-> 1   as y-> 1. (6.10c) 

The interaction law (6.7) is now 
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r(0) 3T 

b   dy y=o 

rwrwd_  r\x) d2 

fl
      a    3JC      a2   3f H^w dy 

7](0)^| 

J = 0 

(6.11) 

Note that/(x,f) is a known analytical function describing the surface shape; therefore, 

its second derivative is most conveniently left in terms of x. Equation (6.2b) and its 

boundary conditions (6.2c) now become 

W 

b   dy b    dy 

y = 0 

r(y)dw 
b    dy  - 

= T, 

= 0, 

(6.12a) 

(6.12b) 
y = 0 

and equations (6.1) become 

r(y) dy r(x) dy 
a    dx' 

(6.13a,b) 

6.2.3 Numerical Methods 

At each time step a solution to the momentum equation (6.10a) subject to the 

conditions (6.10b,c) and the interaction law (6.11) is required. Then for the updated 

t(x,y,f) distribution, equation (6.12a) is integrated subject to conditions (6.12b) to 

obtain the streamfunction y(x,y,t) from which the updated velocity components n(x,y,t) 

and v(x,y,t) are obtained from equations (6.13). The implicit algorithm described below 

combines the momentum equation and the interaction law in a unique manner such that 

no iteration is necessary between the boundary-layer solution and outer inviscid 
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solution at each time step. The algorithm was first developed by Ruban (1978) for the 

supersonic triple-deck formulation, and here it was extended to allow for cold wall 

effects in the hypersonic case. All spatial approximations are second-order accurate, 

while the algorithm is first-order accurate in time. Here, steady-state solutions were 

sought as the large time limit of an unsteady solution; therefore, the first-order temporal 

accuracy was of no consequence in terms of the final solution. 

Although the (x,y) domain is finite, the streamwise velocity is of the form u ~ y 

as y -> °°, and it is necessary, therefore, to choose a finite value of y at which to 

truncate the vertical extent of the domain. Let this value be ymax with corresponding y^ 

from equation (6.8b). The region (-1,0) < (x,y) < (+ l,ymax) was then divided into / - 1 

and 7-1 equal subintervals Ax and Ay in the x and y directions, respectively, and a 

uniform mesh was defined by / = 1,... J and j = l,...,J. Quantities, such as T(x,y,t), at 

the point (x,-,y,) are denoted by xu at the current time step where the solution is sought; 

the corresponding values at the previous time step where the solution is known are 

denoted by T*; . Approximating the normal derivatives by second-order central 

differences and the time derivative by a first-order backward difference, the difference 

equation derived from equation (6.10a) is 

Tw -ii + F®) (..* arl  . r(^ ,.• -Vi.r_Vi 
At a "»L + -r *     2 Ay 

= nsj) rW Vi-vi  rlm vi-z^+vi    (6U) 
b       b 2 Ay b2 (Ay)2 

where the streamwise convection term and the normal velocity are to be evaluated at the 

previous time step as shown; note that this latter approximation incurs an error 

0(Ai). The streamwise convection term is approximated by a second-order accurate 

(in Ax) backward difference in regions of positive streamwise velocity and forward 

difference in regions of negative velocity as follows 
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u ~^ 

usl—-——-r L,  uu>0 "'.; 

■■{ 
2M 

*   3 T,-j - 4 T,-+1;- + T,-+2,; 
(6.15) 

'.; 2 Ax 
,     Ky<0 

and is evaluated at the previous time plane as indicated. Equation (6.14) leads to the 

following tridiagonal problem for TI>;- at each x„ i = 2,...J-l 

cj ^i,j-i + cj Tij + cj T,-j+1 — dp     j — 2,...,7-1, (6.16a) 

where 

r2(Sj)    2 1 
b2    (Ayf     At' 

(6.16b) 

_    n&)    1       ^)r'(£)    1    Mm   <J 
j       b2    (Ayf      b       b     2 Ay       £    2 Ay' 

(6.16c) 

r+^
rW    1     ,n?j)H?j)    1       ^   <i 

1       b2    (Ay)2    . &       b     2 Ay      b    2 Ay' 
(6.16d) 

"y      a 11 3^ At' 
(6.16e) 

Using pivotal condensation, a solution of the difference equations (6.16a) can be 

expressed as the recursive relation 

hi = Rjhj-i + Qp     j = 2,...J, (6.17a) 

where to satisfy the condition (6.10c), the coefficients at the boundary-layer edge 
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(defined by j = J) must satisfy 

Rj = 0,     öy = l, (6.17b) 

and for j = 7-1,...,2 

Rj = 2_      ß. = _ä^Lz4. (6.17c) 

Note that these relations are essentially an elimination procedure similar to the Thomas 

algorithm with equations (6.17b) and (6.17c) constituting the forward elimination in a 

recursive calculation to evaluate the coefficients Rj and Q-} starting at the boundary- 

layer edge and moving toward the wall. The back substitution portion of the algorithm 

in equation (6.17a) gives a recursive formula to evaluate the shear stress TU at the ith 

station starting from the wall and moving toward the boundary-layer edge. Because 

portions of the convective terms are evaluated at the previous time step, the difference 

equations are linear, and equation (6.17a) expresses ru in terms of the value at the 

mesh point immediately below, i.e. TiJA. Using these relations the shear stress at any 

% for given xt may conveniently be expressed in terms of the shear stress at the wall 

Tu , and it is easily shown that 

?i,i = Cij % + Bip     j = 2,...,7, (6.18a) 

where the arrays CUj and BUj are easily evaluated according to the recursion relations 

Cu = l,     £,-,1=0, (6.18b) 

C,; = /?,.C,H,     B.^RJB^ + QJ,     7 = 2,...,/. (6.18c) 

Therefore, the solution to the momentum equation for the shear stress distribution xWl 
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at the current time t may be evaluated from equation (6.18a) throughout the domain if 

the wall shear stress % can be determined. 

In order to calculate the wall shear stress, consider the interaction law (6.11). 

The integral in equation (6.11) may be approximated using the trapezoidal rule to give 

i * (y)   J    7=2 2 7^(^-l) + 7^(V>-l) (6.19) 

Substitution of equation (6.18a) into (6.19) gives an expression for the integral which, 

again, can be written in terms of the wall shear, and it is easily shown that 

fÄmx   -       1 
b\     ^-d? = A/;-Tu+A4.,     at X — Xij (6.20a) 

where the coefficients on the right side are given by 

*-£¥ -£- c ■ +   b   c '.;-i (6.20b) 

-■4M m(B->-l)+Tk){B-»-l). (6.20c) 

Likewise, approximating dr/dy a.ty-0 in equation (6.11) by a second-order accurate 

forward difference, and substituting equation (6.18a) with (6.18b) produces the 

following expression for the shear stress gradient in terms of the wall shear stress 

3T 

dy 

4C,2-3-Q3^   , 4 5,2-5,-,3 

5 = 0 
2 Ay 

Tu + • 2 Ay 
at x=X;. (6.21) 

Equations (6.20a) and (6.21) express the relevant quantities in terms of the wall shear 
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stress distribution and coefficients, all of which are functions of x. Therefore, 

substitution of (6.20a) and (6.21) into the interaction law (6.11) with second-order 

central difference approximations for the derivatives in x yields the following 

tridiagonal system for the wall shear stress: 

c'i T«-u + Q *«.i + $ T<+u = äi,     i = 2,..J-1, (6.22a) 

where 

r\Xi) 2Nt     r(0)4Q2-3-C,3 

a2    (Ax)2      b 2 Ay (6.22b) 

c, =■ 
r2&) Nu  +r(x,)r\xi) NiA 

a2     (At)2 

S£ 

a       a     2M 

m) T(0)    1    4C,li2-3-C,,,3 
a b    2Ax 2 Ay 

(6.22c) 

Q =-• 
r\x.) NM    nXl)r\Xi) NM 

(Axf a       a 2Ax 

+ S£ 
rvo no)   i   4q+1,2-3-q i+i,3 

^   2 A* 2 Ay (6.22d) 

<*• = 
r2(je,) MM -2Mi + Mu ( r(x,.) r '&) ^+1 - A^   a2/ 

(A*r 

-5£ 

a       a 2 Ax        dx2 + 

mm i 
a b    2M 

4 4+i,2 - 4+1,3    4 5,_lj2 - Bt_h3 
2 Ay 2 Ay 

r(0)4£,2-£,,3 

&        2 Ay 

(6.22e) 

In equation (6.22e) the second derivative of the surface contour cff/dx2 is assumed to 

be a known function of x. At any time step the coefficients in equations (6.17), (6.18) 

and (6.20) are evaluated first, and then the tridiagonal system (6.22) is solved for the 

wall shear TU using the Thomas algorithm subject to the boundary condition (6.10b), 
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or 

Ti,i — T^i — 1- (6.23) 

The shear stress throughout the two-dimensional domain is then computed from 

equation (6.18) for i = 2,...J-\ where again from equations (6.10b) at the streamwise 

boundaries of the domain 

TU=T4/=1»       J = X-J- (6.24) 

Next, the velocity components at the current time step are calculated by 

integrating equation (6.12) throughout the domain to obtain the streamfunction. This 

process requires two integrations for fixed x according to 

r9 
ü = b 

Jo m ^dy,     Y = b fife** (6.25a,b) 

and these are carried out for each je,-, i = 1,.../ using the trapezoidal rule as follows 

flf.i=0,     Yu=0, (6.26a) 

and for j = 2,,..,J 

Ay 
ü-ij — öij-i + 2 T,-; + rtfj) "  r<shl) "i.H (6.26b) 

Ay 
¥ij = Yij-i + -f 

b   ü   ,     b     ü (6.26c) 

The next task is to evaluate the velocity components at the current time plane which will 
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be required for the next time step; these components are determined throughout the 

two-dimensional domain from equations (6.13) using central differences according to 

u 
r($j) v,j+i - Yij- 

l->      b        2 Ay     ' (6.27a) 

Vi-i~      a 21     • (6-27b) 

While determination of the pressure distribution is not necessary for 

continuation of the unsteady calculation, it is of physical interest and may be computed 

at any desired time from the shear stress at the wall as follows. Substitution of 

equation (6.3) with (6.6) into the interaction law (5.80c), and application of the 

transformation (6.8) gives 

r(x) 3 f, fw T- 1 IH '—*»*!   7Wd* +%+"¥$ 

Using second-order central difference approximations for the x derivatives and 

substitution of (6.20a) for the integral yields the following tridiagonal system for the 

pressure distribution 

c~i Pi-i + ctPi + ctpM = dh     i = 2,...,/-l, (6.29a) 

where the coefficients are 

£,• = -!> (6.29b) 

G = -S£*TT2AX> (6-29c) 
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ct = S£^^, (6.29d) 

di = ~te    "^ 2M • (6-29e) 

The boundary conditions for a general surface shape f{x,t) are 

3/ 
*    dx 

df (6.30) 

which for the compression ramp become 

Pl=0,     p, = a, (6.31) 

where a is the ramp angle. As before, the Thomas algorithm was used to solve the 

tridiagonal system (6.29) with the conditions (6.31) for the pressure distribution at each 

time step for which it was desired. 

Finally, the stability of the numerical algorithm described above is considered. 

A standard von Neumann analysis of the linearized discretization of the momentum 

equation (6.14) is given in appendix D and leads to the Courant-Friedrichs-Lewy 

criterion, modified due to the finite-domain transformation (6.8), for stability of the 

numerical scheme, namely 

A^rfeTrh- (6-32) 

From the definition (6.9e) of T, the maximum value of Tis 2/% which occurs when 

x = 0; therefore, the stability criterion may be written as 
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At<ÄAAl (6.33) 

Recall that u~y + A for y -> °° ; therefore, the maximum streamwise velocity Hmax is 

roughly equal to the normal coordinate ymax at which the domain is truncated. The 

stability condition (6.33), therefore, restricts the time step for a given choice of the 

mesh. 

6.3 Stability Analysis 

In addition to stability of the numerical algorithm, the work of Tutty and 

Cowley (1986), as well as the results for the first interactive stage of unsteady 

separation discussed in part I, suggest the possibility of an instability within the triple- 

deck formulation itself. Therefore, a linear stability analysis will be given in order to 

determine the criteria for a possible instability. The exact solution to the hypersonic 

triple-deck problem (5.80) is here denoted by subscript zero, and infinitesimal 

harmonic disturbances are introduced where £ « 1. As found in the previous studies, it 

is expected that an instability would be of the inviscid type with short wavelengths 

(high frequencies) compared with the interaction length and time scales; therefore, the 

wavenumber a is large. Introducing normal modes as in §3.5 

u = u0(x,y,t) + £ e^
ttx-act) ux{x,y,i) + -, (6.34a) 

v = v0(x,y,t) + £ ei(-ax-act) a v{(x,y,t) + —, (6.34b) 

p=p0(x,t) + £ei{ax-act)p1(x,t) + -, (6.34c) 

A=A0(x,t) + £eiiax-act)A1(x,t)+-, (6.34d) 
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where a is real, and c = cr + i ct is the complex wavespeed.   If c, > 0, a small 

disturbance becomes unstable. 

Substituting (6.34) into the momentum and continuity equations (5.80a,b), the 

0(1) terms are satisfied by the exact solution, and the 0(ea) terms (0(£cc) > 0(e)) give 

the long-wave Rayleigh equation, namely 

I (U0 -C)UX+ V{ — =~iPi, 
By 

(6.35a) 

i u, + — = Ü. 
dy 

(6.35b) 

Substituting equation (6.35b) into (6.35a) and rearranging yields the first-order linear 

equation for vi 

dvx    du0/dy        i p, 
 Vl = —*—. 
dy     u0-c        u0-c 

(6.36) 

This equation may be solved using the integrating factor (w0 - c)' to give 

Vi = (u0-c){-ipi 
dy 

(«o - c)' 
+ g(x,t)\. (6.37) 

Differentiating with respect to y produces 

3vj _ du0 

dy     dy ■i Pi 
*y^+g(x,t)\+Mt 

(«o - c) Un-C 
(6.38) 

Substitution of (6.34c,d) into the interaction condition (5.80c) and retaining 0(ea) 

terms requires that 
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Aj-Sfp^O. (6.39) 

Similarly, to satisfy condition (5.80d) for v requires 

Vi = 0  at y = 0, (6.40) 

and condition (5.80f) with continuity (6.35b) gives the condition 

1      <fy A 
1       * 3y 

(6.41) 

Therefore, recalling that u0 -»°° and 3w0/3y -> 1 as y -»oo, the result (6.38) subject to 

the condition (6.41) yields 

g(x,t) = - i A{(x,t). (6.42) 

Thus, the solution (6.37) becomes 

V! = - i (u0 -c){pl 
dy 

(«o - c)' 
+A (6.43) 

Applying the condition (6.40) to (6.43) gives 

Pi 
^   _ A 

(«o - c) 
(6.44) 

which from (6.39) becomes 

dj     _ 

(«o - c) 
= -S£. (6.45) 
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Because of the form (5.80f) of u0 as y -> °° , the eigenvalue relation (6.45) is rewritten 

in the form 

1 - du0/dy i 

(«o - c) 
■S£. (6.46) 

Application of the finite-domain transformation (6.8b) with the transformation law 

(6.9c) to this equation gives the eigenrelation 

r»i dun 
r(S)    dy   ,A    i 

(«o - c> 
= -S£, (6.47) 

where T(y) is defined by (6.9e). Therefore, for a given velocity profile u0(y) and level 

of wall cooling S £, the complex wavespeed c must be determined such that the 

eigenrelation (6.47) is satisfied. The flow is unstable to small disturbances if c{ > 0. 

In order to gain additional physical insight into the flow conditions necessary 

for an instability, it is instructive to apply the steps of the proofs of Rayleigh's and 

Fj0rtoft's classical theorems for inviscid flows (see, for example, Drazin and Reid, 

1981) to the present case. Returning to the linear equation (6.36) for vb differentiating 

with respect to y and multiplying by the complex conjugate of vu denoted by v*u gives 

.dfy    3^0  IvJ2 _n 
1 df     dy2 "o~c (6.48) 

where the fact that v* vx = | vx f was used. Integrating equation (6.48) from 0 to y and 

evaluating the first term using integration by parts yields 
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ry 

dy2 

un   v. 
-^->dy: 
«n - C [ U^ 3y. 

Vi (6.49) 

Taking y -> °°  and evaluating the right hand side of (6.49) using the boundary 

conditions (6.40) and (6.41) with the interaction condition (6.39) leads to 

+ 
3y ,2   Mn - C 

• dv = -1 v* S £ px. (6.50) 

But from the solution (6.43) for vls equation (6.39) and the condition u0-*y + AQ + 

asy —> °° 

Vi -» - i (y + A) - c) S £ px  as y -> °°. (6.51) 

Taking the complex conjugate of (6.51) and substituting for v\ in equation (6.50) gives 

dvx P^}ty=<y^-c-HsmP, + (6.52) 

Recognizing   that  (UQ-CY
1
 = (u0-c)* [(u0-c)(u0-c)*J =(u0-c*)\u0-c[      and 

rearranging, equation (6.52) becomes 

dvx ,2 , „   ,2   ,   ^"0     «0 T Cl | Vi f\ dy = {Aj_ c*) (lS £)* | pi \\ (6.53) (5£)2|/?1|
2 + 

dy2 \uo-c\ 

Taking the imaginaiy part of this equation yields 
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ÖUn 

o   df l«o-c|' 
dy = (S£?\Pl\

2, (6.54) 

and when S £ = 0, therefore, <¥u0/dy2 must change sign somewhere in the interval 

0 < y < oo in order for the flow to become unstable. In other words, the velocity profile 

u0(y) must have an inflection point. This is Rayleigh's theorem for instabilities in 

inviscid flows. On the other hand, when S £ * 0, an instability can only occur if 

c?u0/dy2 > 0 for at least part of the interval 0 < y < °°. This condition replaces 

Rayleigh's theorem when the cold wall case is considered. Now taking the real part of 

equation (6.53) produces 

(S£f\Plf + 
a2 

«o   "o - cr 

W \u0-c\ 
\vl\

2\dy = (A()-cr)(S£f\plf.        (6.55) 

For the case without wall cooling (S £ = 0), in which an inflection point is a necessary 

condition, u0(yip) is defined to be the velocity at the inflection point yip, and the 

expression 

[cr-ih(yip)] 
du0    | v 

Sy2 k- 
dy = 0 (6.56) 

is added to the left hand side of (6.55) to obtain 

(flip u0-u0(yip) 

dy2   \u0-c\2 
N2dy = - f äy 

dy. (6.57) 

Therefore, Fj0rtoft's theorem for inviscid flows is reproduced when S £ = 0 which 

states that a necessary condition for instability is that 
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|r My)-«<>(*>] <° <6-58) 

somewhere in the flow field where yip is the location of the inflection point. 

Unfortunately, a generalization of Fj0rtoft's theorem is not evident from (6.55) for 

flows involving wall cooling (S£* 0). In summary, in order for an instability to occur 

in the hypersonic triple-deck formulation without wall cooling, Rayleigh's and 

Fj0rtoft's criteria must be met. And for the cold wall case, rfujdy1 > 0 must be true 

across at least part of the viscous sublayer. Note that these conditions are necessary, 

but not sufficient, for the occurrence of an instability, while the condition (6.46) (or 

(6.47)) is both necessary and sufficient. 

6.4 Calculated Results 

In this section detailed numerical solutions of the hypersonic triple deck as 

formulated in §6.2 will be considered. For the reasons discussed in §5.3, the 

compression ramp geometry has been considered here. However, a slight modification 

to the surface geometry was made. Observe from equation (6.22) of the numerical 

algorithm that the surface shape f(x,t) enters the algorithm as a second-derivative 

with respect to x. But when the slope of f(x,t) is discontinuous, as for the true 

compression ramp (5.82), the second-derivative off(x,t) contains a delta function, 

and this necessitates special treatment at the corner (see Rizzetta et ai, 1978 and 

Brown et al., 1990). In order to keep the present algorithm general for various surface 

shapes j\x,t), the corner was rounded slightly so that <?f/dx2 was a smooth function 

everywhere. Here, the surface shape was defined by 

f(x) = ±a[x + >/x2 + r1], (6.48) 

where a is the scaled downstream ramp angle.   Here, r is called the rounding 
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parameter, and the surface collapses to the sharp compression ramp as r -> 0. All 

results shown are for r = 0.5, although calculations were also carried out for other 

values. This value was found to eliminate the difficulties at the corner while 

minimizing the effect on the overall results. Generally, the value of r has a significant 

influence on the ramp angle at which separation first occurs; however, once separation 

occurs the flow development is essentially similar for all small values of r. 

As discussed in §6.2, a finite value of y^ must be chosen at which to terminate 

the vertical extent of the computational domain. Numerical experimentation revealed 

that the solution was surprisingly insensitive to the value of ymax. For example, for a 

scaled ramp angle of a = 2.5, there was no noticeable change in solutions having 

ymax> 10. However, due to the transformation (6.8b) used for the y coordinate, there 

is little advantage in minimizing y^ as was necessary in previous studies (see, for 

example, Rizzetta et al, 1978). Therefore, yaa = 50 was used throughout, and the 

transformed y coordinate was discretized by defining a uniform mesh over the range 

0<y <ymx where ymax is related to ymax by equation (6.8b). Note, however, that the 

choice of ymax does effect the maximum time step which may be used as specified by 

the numerical stability criterion (6.33). 

Here, steady-state solutions for various parameters were sought as the large 

time limit of unsteady calculations. The initial condition was taken to be that for a flat 

plate (a = 0) in which case u=y. Then at t = 0 the ramp angle was impulsively 

adjusted to its final value, and the computation marched forward in time until a steady 

state was reached. The unsteady numerical calculation was terminated at some large 

time at which dr/dt, computed using a first-order backward difference, was below a 

given tolerance value at each mesh point along the wall where the shear stress 

undergoes the most change. This tolerance was less than 5xl0~4 in all cases. For 

example, this tolerance was achieved for a = 3.5 at approximately t = 180 and at earlier 

times for smaller a. 
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6.4.1 No Wall Cooling: S£ = 0 

Recall from §5.2.8 that the hypersonic triple-deck formulation with S £ = 0 

reduces to that for a supersonic external flow. Therefore, the results shown here apply 

equivalently to flows with supersonic mainstreams and hypersonic flows in regions of 

weak global interaction (% « 1) and high wall temperatures (g£+m » Mln Re^m). This 

case was considered initially in the present investigation in order to verify the algorithm 

through comparison with previously published results since the supersonic flow over a 

compression ramp on triple-deck scales has been considered by Rizzetta, Burggraf and 

Jenson (1978), Ruban (1978) and Smith and Khorrami (1991). In doing so, however, 

a new phenomenon was observed in large ramp-angle flows which has not previously 

been documented. 

The flow for small ramp angles was considered by Rizzetta et dl. (1978) and 

has been repeated here. The pressure and wall shear distributions for a range of small 

ramp angles are shown in figure 6.1a and figure 6.1b, respectively. Calculations were 

carried out for a number of mesh sizes, and the results shown are believed to be grid 

independent. In this and subsequent figures, the finest mesh sizes used are shown in 

the captions along with the stretching factors a and b in the transformation (6.8); note 

that smaller values of a and b mean that in physical space progressively more mesh 

points are packed near the corner and wall, respectively. The pressure tends to zero as 

x —> - <x> and tends to the reduced ramp angle aasi->». Likewise, the scaled wall 

shear tends to one as \x\ —> °° . Reversed flow occurs adjacent to the surface when the 

wall shear becomes negative, and Rizzetta et al.(1978) found that this first occurs for 

a = 1.57. In the present results, incipient separation first occurs at a slightly higher 

ramp angle, cc= 1.9 to two significant figures, and this is due to the rounding of the 

corner in the present calculations. As the ramp angle is increased, the recirculating- 

flow region grows in extent, and a constant pressure plateau forms in the pressure 

distribution in the center of this region. Streamlines are shown for several cases 

involving separation (a = 2.0, 2.5, 3.0 and 3.5) in figures 6.2, 6.3, 6.4 and 6.5 
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-20.0 -10.0 20.0 

(a) Pressure p. 

Figure 6.1 - Numerical solutions for various small ramp angles a: 
I = 101, J = 51 and a = b = 5.0 for a = 1.0, 1.5; 
/ = 201, J = 101 and a = b = 5.0 for a = 2.0, 2.5, 3.0, 
3.5. 
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-20.0 -10.0 20.0 

(b) Wall shear stress tw 

Figure 6.1 - Continued. 
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30.0 

20.0 

10.0 

Figure 6.2 - Streamlines for a = 2.0 with / = 201, J = 101 
and a = b = 5.0. 
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30.0 

10.0 

Figure 6.3 - Streamlines for a = 2.5 with / = 201,7=101 
and a = b = 5.0. 
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10.0 

Figure 6.4 - Streamlines for a = 3.0 with / = 201, J = 101 
and a = b = 5.0. 
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10.0 

Figure 6.5 - Streamlines for a = 3.5 with / = 201, J = 101 
and a = b = 5.0. 
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illustrating the growth in the region of recirculation with increasing ramp angle. Note 

that the separation point moves progressively upstream with increasing a, but that the 

reversed-flow region expands more rapidly downstream. 

The present results for small ramp angles are in good agreement with the 

results obtained in previous investigations. They compare well with the results of 

Rizzetta et al. (1978) for a < 2.5, but for larger ramp angles, the current results reveal 

a reversed-flow region having smaller streamwise and normal extent than that observed 

by Rizzetta et al. (1978), and the present results are in better agreement with the results 

of Ruban (1978) for a = 3.0 and Smith and Khorrami (1991) for a = 3.5. Rizzetta et 

al. (1978) also showed that the triple-deck solutions agree well with the experimental 

results of Lewis, Kubota and Lees (1968) and with finite Reynolds number interacting 

boundary-layer theory (see also Burggraf et al, 1979). 

For cases involving separation, the rise in pressure and the drop in wall shear 

from their upstream values each have invariant shape, with origin at the separation 

point where Tw = 0, as the ramp angle is increased. This corresponds to the free 

interaction considered experimentally by Chapman, Kuehn and Larsen (1957) and 

theoretically by Stewartson and Williams (1969). Increasing the strength of the 

disturbance, in this case the compression ramp, beyond a certain level does not change 

the flow approaching the reversed-flow region except to shift the separation point 

upstream. This was clearly illustrated in the numerical solutions obtained by Ruban 

(1978) who plotted the results for several cases involving separation with origin at the 

separation point. 

The steady solutions obtained by Smith and Khorrami (1991) for larger ramp 

angles (a> 3.5) reveal a continuation of the ttends observed at lower ramp angles. As 

observed in figure 6.1b, the minimum in wall shear drops below zero with increasing 

ramp angle, and eventually the wall shear at the corner (x = 0) begins to rise as the 

ramp angle is increased above a = 3.0 apparenüy anticipating secondary separation at 

the corner.   Indeed, the numerical results of Smith and Khorrami show secondary 
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Separation (rw > 0) at the corner for a > 4.5 and a corresponding drop in pressure just 

downstream of the pressure plateau prior to a subsequent rise to the downstream ramp 

pressure. As the ramp angle is increased further, there is a pronounced decrease in the 

wall shear minimum and increase in the pressure gradient maximum just upstream of 

the reattachment point. Smith and Khorrami (1991) showed that in the steady solution, 

the wall shear and pressure gradient become singular at some large a. The form of 

this singularity was determined by Smith (1988a) and is described in §5.4.1. 

The present results, however, suggest that the unsteady flow becomes unstable 

for large ramp angles in the form of a stationary wave packet at ramp angles well 

below the larger angles considered by Smith and Khorrami (1991). Recall from §6.3 

that Rayleigh's and Fj0rtoft's theorems are necessary conditions for an instability to 

occur in the case without wall cooling. These criteria are satisfied when a velocity 

profile develops an inflection point such that the curvature of the velocity profile 

tfu/dy2 is negative below the inflection point and positive above it. It was found that to 

two significant figures the flow is free of inflectional velocity profiles for a < 3.8, but 

that inflection points first form for a =3.9 near the surface in velocity profiles 

immediately downstream of the corner.   This critical value was determined by 

evaluating c?u/dy2, using a second-order central difference, from the steady solutions 

for various ramp angles. As the ramp angle is increased (ramp angles up to a = 5.0 

were considered here), the inflection point subsequently moves away from the surface, 

and there is an expanding streamwise range near x = 0 over which inflectional profiles 

appear. Using sufficiently refined grids, the numerical solutions did indeed become 

unstable for a>3.9 at the streamwise location where the velocity profiles are 

inflectional. Velocity profiles are shown at the corner (x = 0) for three different ramp 

angles (a= 3.5, 3.9 and 4.5) in figure 6.6. Here, coarse meshes (I = 101,7 = 51) were 

used for a = 3.9 and 4.5 in order to suppress the instability. The velocity profile for 

cc= 3.5 shows that reversed flow can occur in the corner of the compression ramp 

without the appearance of inflection points. This is in contrast to the hump geometries 

considered by Kazakov (1985), Duck (1985) and Tutty and Cowley (1986). In these 
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20.0 

Figure 6.6 - Stream wise velocity profiles atx = 0 for a = 3.5 (- 
a = 3.9 ( ) and a = 4.5 ( ). 

-), 
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studies triple-deck solutions were found (using various interaction conditions) for the 

flow over smooth humps of various heights for which separation occurs on the 

downstream side of the hump for large enough hump heights. In their results, 

however, inflection points were found to appear in velocity profiles for hump heights 

smaller than that necessary for reversed flow. Observe from figure 6.6 that as the 

ramp angle is increased, the magnitude of the reversed-flow velocity adjacent to the 

surface decreases, and the lower portion of the velocity profile straightens out prior to 

formation of an inflection point. For a = 3.9 the inflection point near y = 0 (from 

evaluation of du/dy2) is not detectable graphically, while for a = 4.5 the inflection point 

has moved away from the surface and is clearly visible. 

In order to further verify the existence of the instability, attempts were made to 

compute the eigenrelation (6.47) using the same algorithm as in part I (see appendix 

C). It proved difficult, however, to find 0(1) values of the complex wavespeed c 

which were clearly unstable for the ramp angles considered. In order to test the 

algorithm used for evaluating the integral in (6.47), the flow over the hump considered 

by Tutty and Cowley (1986) was recomputed, and the stability criterion (6.47) was 

evaluated in order to attempt to reproduce their results using the present code. The 

surface geometry was defined by 

f(x) = he-Wx\ (6.49) 

and the flow was computed as for the compression ramp keeping in mind, however, 

that the solutions of Tutty and Cowley (1986) were obtained using the interaction 

condition A = 0 rather than the supersonic interaction condition (p = -dA/dx) used here. 

They show, for example, results for Re(c) and Im(c) for a hump of height h = 2 (see 

their figure 2a) where c was found from evaluation of the instability criterion (6.47) 

for velocity profiles over a range of x using a secant method. For this case Re(c) and 

Im(c) are 0(1), and their results were reproduced using the present codes. However, 
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for smaller hump heights close to the critical value at which Tutty and Cowley (1986) 

found the flow to become unstable, it proved difficult to precisely determine c. In 

these cases Im(c) is smaller and the streamwise range of unstable profiles is much 

shorter. Therefore, it is believed that in the case of the compression ramp the Im(c), 

and thus the growth rate, is small for the ramp angles considered here and is therefore 

difficult to determine from integration of equation (6.47). A contributing factor may 

also be the difference in the normal location of the inflection point in velocity profiles 

from the compression ramp and hump geometries as discussed above. 

The instability is manifest in the form of a stationary wave packet which 

develops in the unsteady solution. An example is shown in figures 6.7 and 6.8 where 

a and b have been increased to 10.0 in order to insure that the time step is sufficiently 

small to avoid instability of the numerical algorithm according to equation (6.33). 

Figure 6.7 shows the pressure and wall shear distributions after the instability has 

developed for a case with a = 4.0, and figure 6.8 shows the temporal development of 

the wave packet for the same case. For a> 3.9 the general form of the wave packet 

and its streamwise location remain the same, and the results shown are representative 

of those for other ramp angles. The effect of mesh size on the instability is similar to 

that observed in part I for the first interactive stage. Sufficient resolution is required in 

order to reveal the instability in the numerical calculations. This is apparently why the 

instability has not been observed in previous investigations that computed the unsteady 

flow over compression ramps. Even in the present study, where the transformations 

(6.8) were used to concentrate grid points near the corner, no instability was observed 

in the numerical solutions for 3.9 < a< 5.0 where 7 = 101 and 7 = 51. In these cases 

the results were in good agreement with those of Smith and Khorrami (1991). As the 

mesh was reduced, smaller wavelength, faster growing unstable modes were admitted, 

and the small numerical errors introduced in the calculation were magnified causing die 

instability to form. For even finer meshes, the instability occurred at earlier times and 

evolved more rapidly due to the faster growth rates. For example, the case shown in 

figures 6.7  and 6.8  computed  with  7 = 301   and  7=151   became  unstable  at 
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-20.0 20.0 

(a) Pressure p. 

Figure 6.7 - Stationary wave packet for a = 4.0 at t = 85.0 with / = 301, 
7=151anda = fc=10.0. 
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(b) Wall shear stress Tw. 

Figure 6.7 - Continued. 
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Figure 6.8 - Temporal development of wave packet in pressure p and 
wall shear stress Tw (same case as in figure 6.7). 
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approximately t = 85, while the same case computed with / = 201 and J = 101 became 

unstable at about t = 128. The oscillations in figures 6.7 and 6.8 are basically point to 

point, and finer meshes produce smaller scale oscillations. In addition, reductions in 

time step were found to delay, but not eliminate, the onset of the instability. Although 

changes in the spatial mesh and time step alter the time at which the instability forms, 

they do not alter the streamwise extent and shape of the envelope surrounding the wave 

packet. 

While similar instabilities have been observed in previous studies of triple-deck 

flows, this appears to be the first case known in which the instability was exhibited in 

the form of a stationary wave packet. The flow over a hump on the triple-deck scales 

was considered by Kazakov (1985) and Tutty and Cowley (1986) and was found to 

become unstable as well. In particular, both studies demonstrated that a wave packet 

forms downstream of a hump having sufficient height.  In these cases, however, the 

wave packet convected downstream after formation; therefore, it is referred to as a 

convective instability (Drazin and Reid, 1981).   The instability in that case was 

hypothesized by Tutty and Cowley (1986) to be responsible for the periodic eddy 

splitting observed downstream of the hump. One qualitative difference between the 

flow over a hump and the flow over a compression ramp is the normal location of the 

inflection point in the velocity profiles. As mentioned briefly above, the inflection point 

forms away from the surface in the flow over a hump, while for the compression 

ramp, the inflection point first forms near the surface. Whereas the inflection point is 

always located within the reversed-flow region in the case of a compression ramp (see 

figure 6.6), it is always located in a region of positive velocity in the case of a hump. 

More study is required in order to determine if this is an important feature 

distinguishing stationary and convective instabilities. The evolution of an instability for 

flow over an unsteady hump, again on triple-deck scales, has also been considered by 

Duck (1985) and Tutty and Cowley (1986). In both studies, the generation of wave 

packet type instabilities convecting downstream from the hump was attributed to a 
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high-frequency inviscid instability. 

The generation and evolution of convective wave packets has been considered 

in several studies. Gaster and Grant (1975) studied experimentally the evolution of 

three-dimensional wave packets generated by an acoustic pulse within the boundary 

layer on a flat plate. It was shown that the three-dimensional wave packet initially 

grows in amplitude and expands with a smooth envelope. But as it convects 

downstream, non-linear effects distort and alter the smooth peaks. This was also 

demonstrated in the theoretical study by Ryzhov (1990). This study, as well as the 

work of Ruban (1988), investigated the evolution of wave packets in the framework of 

triple-deck theory. Additional studies (see, for example, Gaster, 1982, Jiang, 1991 and 

the references therein) have sought to develop theoretical models which describe the 

evolution of wave packets during their linear stage of development. Whereas classical 

stability theory only considers the stability of particular modes, these theoretical models 

take into account modes having a broad range of frequencies which describes the 

formation of wave packets. It is believed that wave packets are a precursor to the 

formation of turbulent spots in the transition process from laminar to turbulent flow. 

6.4.2 Wall Cooling: S£*0 

Next, the effects of wall cooling on the results discussed in the previous section 

were considered. In particular, the effects of wall cooling on separation and stability 

characteristics were of interest. Recall from §5.2 that in the present context, the term 

cold wall means that the wall cooling parameter S = (y- l)'m A5/4 Mla g-{n+m) R<%m is 

0(1) where the wall temperature factor gw is small. As gw is increased, S becomes 

small, and the limiting case (S = 0) is the non-cold wall case which was considered in 

the previous section and which is equivalent to the classical supersonic triple deck. In 

that case the displacement effect of the viscous sublayer dominates over that of the 

main deck. On the other hand, as gw is reduced below the critical range where S is 

0(1), S becomes large, and the displacement effect of the main deck dominates over 
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that of the viscous sublayer. This is referred to as the strong wall cooling case and was 

considered by Kerimbekov, Ruban and Walker (1993) and Zhikharev (1993). 

In addition to the magnitude of S, the hypersonic boundary layer with wall 

cooling is characterized by the sign of £ where £ is given by equation (5.81). When 

the average Mach number across the boundary layer just upstream of the interaction 

region is less than one, £ is positive; this is called the subcritical case. When the 

average Mach number is greater than one, £ is negative, and the boundary layer is 

called supercritical. For hypersonic flows, which have large mainstream Mach 

numbers, the supercritical case is expected to be more common in practice. Indeed, it 

can be shown that when viscosity depends linearly on temperature (n = 1), the Blasius 

boundary layer on a flat plate is supercritical for gases having specific heat ratio 

7<2.37 and subcritical for gases with y>2.37 (Zhikharev, 1993, private 

communications). Therefore, the boundary-layer flow of common gases, such as air, 

would be supercritical in most situations. However, subcritical boundary layers may 

occur for specialized gases or situations such as those involving dissociation or 

ionization. An interesting possibility arises when the average Mach number across the 

boundary layer is one (£ = 0) in which case the effects of wall cooling are negated (for 

5 = 0(1)). 

Here, the wall cooling case for which 5£ = 0(1) is of interest where the 

contributions of the viscous sublayer and main deck to the displacement thickness are 

of the same order; results were obtained for both subcritical and supercritical cases. 

Unless stated otherwise, all results shown in the remainder of this chapter were 

obtained on a mesh defined by / = 201, J = 101 and a = b = 10.0 except for cases with 

a=1.0 where the mesh was defined by 7=101, 7 = 51 and a = 6 = 5.0. A 

comprehensive set of numerical results with various levels of wall cooling for a series 

of ramp angles is shown in figures 6.9 through 6.17. Figures 6.9, 6.10, 6.11, 6.12 and 

6.13 show pressure and wall shear distributions for a range of both subcritical and 

supercritical S £ for a = 1.0, 2.0, 3.0, 4.0 and 5.0, respectively. Note that for a> 2.0, 

some cases have been omitted; these are cases for which the solutions became unstable 
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(a) 

1.0 

0.5 

0.0 
-20. 20. 

(a) Pressure p. 

Figure 6.9 - Numerical solutions for a = 1.0 with various levels of wall 
cooling; S £ - - 10.0,..., 10.0 in increments of 2.5: no wall 
cooling ( ), subcritical boundary layer ( ) 
and supercritical boundary layer ( ). 
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Figure 6.9 - Continued. 
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(a) Pressure p. 

Figure 6.10 -Numerical solutions for a = 2.0 with various levels of wall 
cooling; S £ = - 10.0,..., 10.0 in increments of 2.5 (case not 
shown was unstable): no wall cooling ( ), subcritical 
boundary layer ( ) and supercritical boundary layer 
( )• 

204 



1.00 

(b) Wall shear stress rw. 

Figure 6.10 - Continued. 
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(a) Pressure p. 

Figure 6.11 -Numerical solutions for a- 3.0 with various levels of wall 
cooling; S £ = - 10.0,..., 15.0 in increments of 2.5 (cases not 
shown were unstable): no wall cooling ( ), subcritical 
boundary layer ( ) and supercritical boundary layer 
( )- 
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(b) Wall shear stress tw. 

Figure 6.11- Continued. 
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(a) Pressure p. 

Figure 6.12 -Numerical solutions for a = 4.0 with various levels of wall 
cooling; S £ = - 15.0,..., 22.5 in increments of 2.5 (cases not 
shown were unstable): subcritical boundary layer ( ) 
and supercritical boundary layer ( ). 
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2.00 

(b) Wall shear stress xw. 

Figure 6.12 - Continued. 
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(a) Pressure/?. 

Figure 6.13 -Numerical solutions for a = 5.0 with various levels of wall 
cooling; S £ = - 20.0,..., 32.5 in increments of 2.5 (cases not 
shown were unstable): subcritical boundary layer ( ) 
and supercritical boundary layer ( ). 
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(b) Wall shear stress xw. 

Figure 6.13 - Continued. 
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(a) S £ = -2.5. 

Figure 6.14 - Streamlines for a = 3.0. 
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(b)S£ = -5.0. 

Figure 6.14 - Continued. 

213 



30.0 

10.0 

(c)5£ = -7.5. 

Figure 6.14 - Continued. 
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(a) 5 £ = -5.0. 

Figure 6.15 - Streamlines for a = 5.0. 
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(b)S£ = -10.0. 

Figure 6.15 - Continued. 
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(c)S£ = -15.0. 

Figure 6.15 - Continued. 
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Figure 6.16 - Streamlines for a = 4.0 and S £ = - 12.5. 
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Figure 6.17 - Summary of separation and stability characteristics for flows 
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cooling S £. 
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in the form of stationary wave packets near the corner as described in the previous 

section. Streamlines are shown for ramp angles « = 3.0 and 5.0 in figures 6.14 and 

6.15, respectively, for a series of wall cooling cases in the supercritical regime 

involving separation. In addition, streamlines for a particular case with a = 4.0 and 

S £ = -12.5 are shown in figure 6.16. The separation and stability characteristics of all 

the solutions represented in the above mentioned figures are summarized in figure 

6.17. The features of these results will be discussed subsequently. 

The most obvious effect of wall cooling exhibited in the pressure and wall shear 

distributions for all ramp angles shown (see figures 6.9 through 6.13) is the limiting of 

upstream or downstream influence as the wall is cooled. In the case of subcritical 

boundary layers, increased wall cooling reduces the downstream extent of influence of 

the compression ramp. In the pressure distributions, this is observed as an abrupt 

decrease in the distance downstream of the corner at which the pressure reaches its 

downstream value. Similarly, the wall shear tends more rapidly to its downstream 

value as the wall is cooled. In addition, increasing the wall cooling in the subcritical 

case results in a significant increase in the upstream influence of the ramp which is 

observed as a much slower decay of the pressure and wall shear to their upstream 

values. In the case of supercritical boundary layers, just the opposite behavior is 

observed. As the wall is cooled, the upstream influence of the ramp is reduced 

dramatically, and the point at which the pressure and wall shear begin to rise and fall, 

respectively, from their upstream values moves downstream into the comer. Likewise, 

the decay of the pressure and wall shear distributions to their downstream values 

occurs over a longer streamwise distance as the wall cooling is increased. This 

reduction in upstream influence as the wall is cooled in the supercritical case has been 

observed experimentally by Lewis, Kubota and Lees (1968). In the extreme case of 

very large |5£|, Kerimbekov et al. (1993) show that there are no disturbances 

upstream of the corner due to the ramp in the supercritical case and none downstream 

of the corner for subcritical flow. In cases for which no separation occurs (see figures 
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6.9b and 6.10b), the wall shear reveals an additional feature. For subcritical boundary 

layers, increases in wall cooling dramatically increase the magnitude of the minimum 

in the wall shear and shift it upstream slightly. While there is also an increase in the 

magnitude of the wall shear minimum as the wall is cooled in the case of supercritical 

boundary layers, the minimum is shifted downstream instead. 

Wall cooling was found to have an even more pronounced effect on cases 

involving separation. Although stability characteristics will be discussed later, it is 

pertinent at this stage to point out that in every case where the flow was subcritical and 

separation occurred, the numerical solution became unstable in the form of a stationary 

wave packet near the corner as described in §6.4.1. This is reflected in figures 6.10b, 

6.11b, 6.12b and 6.13b where Tw is positive for all x in every case involving 

subcritical flow in which a stable solution was obtained. In contrast, many cases 

involving separation in supercritical flows were found to remain stable; for these cases 

wall cooling was found to have a significant effect upon the flow. From the wall shear 

distributions (figures 6.10b, 6.11b, 6.12b and 6.13b), it is observed that separation 

persists for even relatively large values of wall cooling, and the drop in wall shear from 

its upstream value to zero at separation steepens and occurs over a much shorter 

streamwise distance as the wall cooling is increased. In fact, this is believed to be the 

cause of the oscillations in wall shear observed in the numerical solutions immediately 

upstream of the separation point for large ramp angles (see figures 6.12b and 6.13b). 

This behavior is not believed to be due to an instability because of the streamwise 

locations where it occurs (well upstream of the corner) and the fact that the amplitude 

of the oscillations do not continue to grow with time (results shown are steady 

solutions). Rather, the oscillations are believed to be a numerical consequence of the 

apparent development of a jump discontinuity in the slope of the wall shear distribution 

at the upstream limit of influence of the compressive disturbance. Reductions in the 

mesh result in smaller scale oscillations. As the wall cooling is increased further, there 

is a dramatic decrease in the streamwise extent of the recirculating-flow region just 

prior to its elimination. 
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The effects of wall cooling in the supercritical regime on the recirculating region 

itself are displayed in the results for pressure and wall shear in figures 6.10 through 

6.13 and the streamline plots shown in figures 6.14 through 6.16. The primary 

features observed are a downstream shift in the point of separation and an overall 

reduction in the streamwise and normal extents of the recirculating-flow region. 

Indeed, for all ramp angles (for which solutions were obtained) where separation 

occurs in the non-cold wall case (a = 2.0, 3.0, 4.0 and 5.0), separation was ultimately 

eliminated by sufficient wall cooling. Figures 6.12a and 6.13a also show that increased 

wall cooling decreases the value of the pressure plateau in the region of recirculating 

flow. Comparison of figure 6.14 for a = 3.0 with figure 6.4 for the non-cold wall case 

shows the effects of wall cooling on the streamlines. Whereas the flow without wall 

cooling passes smoothly over the recirculating-flow region, the flow with wall cooling 

experiences an increasingly abrupt change in direction just upstream of separation as 

the wall cooling is increased until separation is completely suppressed at which point 

the streamlines become smooth. This is also shown in the streamline plots of figure 

6.15 for a series of cases with a = 5.0. In addition, figure 6.15 shows that for high 

ramp angles, there is a dramatic thinning of the recirculation zone downstream of the 

corner when the wall is cooled but with little change in the streamwise location of 

reattachment. Note that figure 6.15a shows the streamlines for a case involving 

secondary separation at the corner in which a small recirculating flow region forms 

within the primary reversed-flow region. Observe that the streamlines in the primary 

recirculating-flow region rise abruptly as they pass over the secondary separation. This 

secondary separation is eliminated as the wall cooling is increased in the same way that 

the primary reversed-flow region vanishes. Figure 6.16 shows the streamlines for an 

example with a = 4.0 and S £ = -12.5 in which the separation point is located on the 

ramp downstream of the corner. For this case, the recirculating flow is completely 

contained on the ramp showing dramatically the effect of the limiting of upstream 

influence which results for wall cooling of supercritical boundary layers as described 

by Kerimbekov et al. (1993).   Many other cases were found to have separation 
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occurring downstream of the corner, but as observed in figure 6.16, the recirculating 

flow region is very thin and becomes difficult to see in the streamlines as the wall 

cooling is increased. 

The separation and stability characteristics of all the cases shown in this and the 

previous section are summarized in figure 6.17. The non-cold wall results of §6.4.1 

are shown along the line S £ = 0, and wall cooling cases in the supercritical and 

subcritical regimes are shown for S £ < 0 and 5 £ > 0, respectively. Recall from §6.4.1 

that separation occurs in cases without wall cooling for cc> 1.9 and becomes unstable 

for cc> 3.9. Observe from figure 6.17 that as the ramp angle is increased, there is a 

larger range of S £ (both subcritical and supercritical) for which separation occurs. But 

for both subcritical and supercritical boundary layers, separation is eliminated with 

sufficient wall cooling (at least for a< 5.0). However, supercritical wall cooling is 

more effective in suppressing separation. For example, for a = 5.0 separation is 

eliminated for S £ < -20.0 in the supercritical regime but for S £ > 27.5 in the subcritical 

regime. 

While the effects of wall cooling on separation increase gradually with S £, the 

effect on stability is more dramatic. Wall cooling of supercritical boundary layers has 

a strong stabilizing effect, while that of subcritical boundary layers has a strong 

destabilizing effect. From figure 6.17 it can be seen that all supercritical cases 

computed remained stable, while all subcritical cases involving separation became 

unstable and those where separation did not occur remained stable. The stabilizing 

effect of wall cooling on supercritical boundary layers in two-dimensional flow has 

been observed experimentally by Lewis et al. (1968) who considered the supersonic 

flow over compression ramps, and the same effect is also discussed in the review by 

Stetson and Kimmel (1992) of the stability characteristics of hypersonic boundary 

layers. Note that in the majority of investigations of hypersonic boundary-layer flows, 

there is no recognition of the two flow regimes, but the bulk of the cases considered are 

likely to be supercritical for the reasons discussed above. 

Next, it is of interest to verify the scalings (5.87) for the strong wall cooling 
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case considered by Kerimbekov et al. (1993). This has been done through 

comparison of the results obtained here for |5£| large, but 0(1), with some of the 

results of Kerimbekov et al. (1993) discussed in §5.4.2 for the strong wall cooling 

case. Recall from equations (5.87a), (5.87e) and (5.89b) that the strong wall cooling 

variables x, p and Dt of Kerimbekov et al. (1993) are related to the current variables 

by JC = AT
3/4

X, p=N-mp and a = N-ma, respectively. For N = [S | £ |]4/3» 1, the 

leading-order pressure distribution for the compression ramp is given by equation 

(5.92) for supercritical boundary layers and by equation (5.93) for subcritical ones. In 

order to compare the numerical results obtained here with these analytical results, the 

computed pressure distributions for a = 1.0, 2.0, 3.0, 4.0 and 5.0 for both the 

subcritical and supercritical cases were replotted in terms of the scaled variables and 

compared with the analytical results. Note that the scales on p and u, are the same; 

therefore, the pressure distributions defined by equations (5.92) and (5.93) are the same 

in terms of p and a. For each ramp angle, the subcritical and supercritical case 

computed with the largest level of wall cooling (see figure 6.17) was scaled in terms of 

x and compared to the analytical results for pressure given by equations (5.92) and 

(5.93), respectively. The wall cooling parameters used for each ramp angle are shown 

in table 6.1, and the comparisons are shown in figure 6.18a for the subcritical regime 

and figure 6.18b for the supercritical regime. Observe that the agreement is very good 

even for the relatively small values of | S £ | used in the numerical calculations. Note 

that the small discrepancies near x = 0 are due to the slight rounding of the corner used 

in the numerical calculations. 

In addition to the above comparisons of the pressure distributions, a series of 

calculations were carried out in order to determine the incipient separation 

characteristics as |5£| is increased for the supercritical case. This was done by 

determining the ramp angle a0 and streamwise location x0 at which separation first 

appears for various levels of wall cooling. For each value of -S£ in increments of 5.0, 

a series of calculations were carried out with increasing values of the ramp angle a 

until a small separation bubble formed on the surface.  This ramp angle a0 and the 
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Ramp Angle 
a 

Subcritical 
S£ 

Supercritical 

S£ 

1.0 10.0 -10.0 

2.0 10.0 -10.0 

3.0 15.0 -10.0 

4.0 22.5 -15.0 

5.0 30.0 -20.0 

Table 6.1 - Wall cooling values S £ used with the subcritical and 
supercritical regimes for each ramp angle a in the numerical 
calculations for comparison in figure 6.18 with the strong 
wall cooling results. 
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(a) Subcritical boundary layer. 

Figure 6.18 -Comparison of pressure distributions from numerical results 
( ) for cases given in table 6.1 with analytical results 
( ) for strong wall cooling case. 
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(b) Supercritical boundary layer. 

Figure 6.18 - Continued. 
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streamwise location x0 at which it occurs for each value of -S£ is shown in figure 6.19. 

These results were obtained on meshes defined by / = 201, 7 = 101, a = b = 10.0 for 

\S£\< 30.0 and a = b = 20.0 for | S £ | > 35.0. An expanded mesh was used for higher 

levels of wall cooling because as -S£ is increased, separation moves downstream and 

greater resolution is necessary away from the corner. As the degree of wall cooling is 

increased, figure 6.19 shows that the critical ramp angle required for separation 

increases. In addition, the streamwise location where separation appears moves well 

downstream of the corner as predicted by Kerimbekov et al. (1993). This procedure 

was terminated at S £ = -45.0 because as separation moves downstream of the corner 

for increased wall cooling, it becomes increasingly difficult to obtain accurate numerical 

solutions using the present algorithm which packs points near the corner at the expense 

of resolution upstream and downstream. It is likely that this procedure could be earned 

out for larger levels of wall cooling if a transformation similar to equation (6.8a) was 

used but with an adjustable value of the streamwise location of grid packing. 

Recall from §5.4.2 that the results of Kerimbekov et al. (1993) show that for 

N»l, the critical ramp angle and the location at which separation first occurs in terms 

of the scaled variables (5.87) with (5.89) are ä0 = 0.7548 and x0 = 0.5 , respectively. In 

order to confirm these values, the incipient separation results shown in figure 6.19 are 

shown in figure 6.20 in terms of the scaled variables 5 and x. Again, accurate results 

for larger values of -S£ could not be obtained with the algorithm used here. It is 

evident from figure 6.20b that the results for XQ when S£ = -45.0 are questionable. 

However, as | S £\ increases, it does appear that the numerical results for a0 and x0 are 

tending to the critical values for large N determined by Kerimbekov et al. (1993). 

Therefore, the present numerical investigation appears to confirm the scalings (5.87) 

for the strong wall cooling case. Particularly strong evidence of this is given by the 

comparisons of the pressure distributions obtained numerically and analytically shown 

in figures 6.18a and 6.18b. 

Observe from the numerical results discussed in this section that one of the 
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Figure 6.19 -Critical ramp angle OQ at which incipient separation of a 
supercritical boundary layer occurs for various values of wall 
cooling and the streamwise location x0 where it appears. 
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(a) Critical ramp angle a0 at which separation first occurs. 

Figure 6.20 -Incipient separation results from figure 6.19 shown in terms 
of strong wall cooling variables with critical values from 
Kerimbekov etal. (1993) shown for comparison. 
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(b) Streamwise location x0 where incipient separation appears 

Figure 6.20 - Continued. 
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primary effects of wall cooling is a dramatic increase in the streamwise scale of the 

interaction region (relative to the scaled triple-deck variables) as the wall is cooled (N 

increased). This is reflected in the streamwise scale (5.87a), where x = N3'4 x, for the 

strong wall cooling case considered by Kerimbekov et al. (1993). This is in contrast 

to the strong wall cooling case considered by Brown et al. (1990) (referred to there as 

the subcritical case). Their streamwise variable, here denoted by x, is related to the 

triple-deck variables used here by x = N~mx. Therefore, as N becomes large, their 

interaction region becomes significantly smaller than that considered here, and 

separation must then be confined to a small region centered at the corner. This is in 

clear conflict with the present results, however, where separation is found to move 

upstream or downstream away from the corner as the wall is cooled. Therefore, the 

present results for hypersonic flow over cold walls raises some questions with regard 

to the subcritical case considered by Brown et al. (1990). 
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7. Conclusions 

A general algorithm has been implemented for calculation of the hypersonic 

triple-deck on a cold wall. While the algorithm applies for general surface shapes on 

the triple-deck scale; here, it has been used to compute the flow over the compression 

ramp geometry with various reduced ramp angles a and levels of wall cooling S £. 

The steady-state solutions were calculated as the large-time limit of unsteady 

calculations. 

Due to the occurrence of instabilities in previous investigations of interactive 

flow (see Tutty and Cowley, 1986 and part I of the present study) a linear stability 

analysis was performed for the hypersonic triple deck on a cold wall. It was shown 

that for the non-cold wall case, Rayleigh's and Fj0rtoft's criteria are necessary 

conditions for an instability. Simply stated, these criteria require the formation of an 

inflection point in a velocity profile such that the curvature is negative below the 

inflection point and positive above it. For the cold wall case, however, no analogous 

conditions could be determined which were particularly useful in identifying an 

instability. In addition, a stability condition was determined which provides a 

necessary and sufficient criterion for the occurrence of an instability for cases both with 

and without wall cooling. This condition, however, was difficult to accurately evaluate 

numerically for the flow over the compression ramp. 

Numerical solutions were first determined for various ramp angles without wall 

cooling (S £ = 0). This case also corresponds to the triple deck with a supersonic 

external flow. The results for small ramp angles (a<3.5) were in good agreement 

with previous studies by Rizzetta, Burggraf and Jenson (1978), Ruban (1978) and 

Smith and Khorrami (1991). As was shown by these studies, the flow for ramp 

angles above a critical value separates from the wall in the corner; in the present 

investigation, where the corner was rounded slightly, this occurred for a > 1.9. As the 

ramp angle is increased, the streamwise and normal extent of the recirculating-flow 
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region grows substantially, and the pressure distribution develops a pressure plateau. 

As the ramp angle is increased further, it was found in the present study that a high- 

frequency instability develops in the numerical solution in the form of a stationary 

wave packet near the corner. This was found to occur for a> 3.9 when sufficiently 

refined grids were used. Just as in part I, this instability has high frequencies and short 

wavelengths, and for this reason it is highly mesh dependent. As the mesh is reduced, 

smaller wavelength, faster growing modes are manifest in the calculation, and the 

instability appears earlier in the unsteady calculation and grows more rapidly. While 

the specific form of the instability and the time at which it appears is highly mesh 

dependent, the bounding envelope of the wave packet maintains the same shape and 

streamwise extent regardless of the mesh used. In addition, the wave packet remains 

largely the same for all ramp angles considered in which the flow becomes unstable. 

The existence of the instability in the numerical calculations without wall cooling is 

consistent with Rayleigh's and Fj0rtoft's criteria. For a< 3.8 the flow was found to 

contain no inflection points in the velocity profiles, and the numerical solutions 

remained stable. Inflectional profiles which satisfied Fj0rtoft's criterion were found for 

a> 3.9, and it was these cases for which the numerical solution became unstable. 

Wall cooling was found to have a significant effect upon both the separation 

and stability characteristics of the flow. Numerical solutions were obtained for various 

ramp angles and a range of wall cooling values for both subcritical and supercritical 

boundary layers. The most prominent effect of wall cooling was found to be on the 

stability of the flow. Wall cooling of subcritical boundary layers has a strong 

destabilizing effect, while that for supercritical flows has a strong stabilizing effect. In 

fact, every case considered involving supercritical boundary layers for the ramp angles 

investigated (up to cc= 5.0) remained stable. On the other hand, eveiy case computed 

with subcritical flow which involved separation became unstable while those without 

separation remained stable. 

The location and extent of the recirculating flow is also affected significantly by 

wall cooling.   It was shown that sufficient wall cooling of both subcritical and 
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supercritical boundary layers is capable of eliminating separation altogether. For the 

supercritical cases, increasing the level of wall cooling reduces the size of the 

recirculating-flow region and shifts the separation point downstream This is a 

consequence of the overall effect of wall cooling in reducing the upstream influence in 

supercritical flows. Conversely, wall cooling of subcritical flows reduces the 

downstream influence. This trend continues until, in the limit of large Neiland number 

N, no disturbances associated with the ramp are permitted upstream of the corner for 

supercritical flow or downstream of the corner for subcritical flow (see §5.4.2). 

Finally, the present algorithm was used to verify the scalings for the strong wall 

cooling case considered by Kerimbekov, Ruban and Walker (1993) which is 

characterized by large N.   This has been done in two ways.   First, the pressure 

distributions obtained numerically for large but finite | S £\ were compared with the 

analytical results obtained in the limit of large N for the leading-order pressure in both 

the subcritical and supercritical cases. The agreement was good for a range of ramp 

angles even for relatively small \S£\.  The second comparison was made with the 

incipient separation results of Kerimbekov et al. (1993) obtained for the supercritical 

case in the limit of large N.   They found that in terms of the strong wall cooling 

variables, incipient separation occurs at the critical ramp angle ä0 = 0.7548   at a 

streamwise location x0 = 0.5. In order to compare with these results, the ramp angle 

and streamwise location of incipient separation were determined numerically for 

increasing values of -S £ (supercritical flow). As S £ is increased, it was shown that 

the ramp angle at which incipient separation occurs also increases, and the separation 

point moves well downstream of the corner. When scaled according to the strong wall 

cooling variables, these results did tend toward the critical values determined by 

Kerimbekov et al. (1993) as -5 £ increased. Therefore, it was demonstrated that the 

streamwise extent of the interaction region expands (relative to the triple-deck variables) 

as the wall is cooled, and it does so with the scalings given by Kerimbekov et al 
(1993). 
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